
•The world is not bound to get better as a result of new discoveries in science and
technology, nor is it bound to get worse, there will simply be new opportunities for
making it better or worse.--Brian Stableford •Where nothing is certain, everything is
possible--Margaret Drabble•If everyone is thinking alike then somebody isn't
thinking.--General George Patton Jr.•Never tell people how to do things. tell them
what to do and they will surprise you with their ingenuity.--General George Patton
Jr.•It makes no difference what they call you, what matters is what you answer to.
--Jeffry Stetson-"The Meeting"•Satisfaction and excellence are inherently in conflict.-
-Laurence Miller•Forgive O Lord all my little jokes on Thee that I may forgive Thy big
one on me.--Robert Frost•Even historical periods may be liminal, transitional times,
when the past has lost its grip and the future has not yet taken shape.--Barbara G.
Myerhoff et al. "Rites of Passage" •Follow the First Law of Holes; if your in one, stop
digging.--Dennis Healey•Security is mostly superstition. It does not exist in
nature...Life is either a daring adventure or it is nothing".--Helen Keller•Sublime is the
dominion of the mind over the body, that, for a time, can make the flesh and nerve
impregnable and string the sinews like steel, so that the weak become so mighty.--
Harriet Beecher Stowe •The egg shall not teach the hen to lay.--the hen•Yesterday
is history. tomorrow is a mystery. Today is a gift. That's why we call it the present.--
Barbara DeAngelis•Experts can explain anything in the objective world to us, yet
we understand our own lives less and less. We live in the post-modern world, where
everything is possible and nothing is certain.--Vaclav Havel •When the going gets
wierd, the Wierd turn pro.--Hunter S.Thompson•It is better to know some of the
questions than all of the answers.--James Thurber•Nothing you do will ever go to
waste. The ripple effects can be beyond imagination.--Eugene Lang• "Did you here
it?" she asked, and I shook my head no and then she started to dance and
sudddenly there was music everwhere, and it went on for a very long time, and
when I finally found words all I could say was "Thank you".--???•An unobserved life
never lived--Nitche•Judiciously show a cat milk, if you wish her to thirst for it.
Judiciously show a dog his natural prey, if you wish him to bring it down one day.--
Defarge, Tale of Two Cities•As the axe swung toward the tree, the forrest cried out
"but wait, the handle is one of us!"--???•I am the darker brother. They send me to
eat in the kitchen when company comes, but I laugh, and eat well, and grow
strong.--Langston Hughes•Politicians remain professional because the voters remain
amaetures--???•If they were right then I'd agree, but its them they know not me--
Cat Stevens•A man may fall several times, but he isn't a failure until he starts saying
somebody pushed him.--???•What we want most is someone who will make us do
what we can.--Emerson•Get out of your own way--Emerson• Its funny when people
think oh Mary Joe she's so smiley and nice and then we play and I smear them. I like
that.--Mary Joe Fernandez• There is Do and Not Do. There is no Try.--Yoda•An eye
for an eye makes the whole world blind.--Ghandi•Once we watched the lazy world
go by, now the days seem to fly--Disney's Animated Robin Hood• "What you got?"
"The whole world. My pa left it to me-- all of it."--Mickey Rooney, National
Velvet•The reasonable man adapts himself to the world; the unreasonable one
persists in trying to adapt the world to himself. Therefore all progress depends on the
unreasonable.--George Bernard Shaw•Sanity Is not Statistical--George
Orwell•Beloved Friends: Do not be dismayed or deterred. Take courage in the
security of God's Law and ordinances. These are the darkest hours before the break
of day. Peace, as promised, will come at night's end. Press on to meet the dawn.--
Universal House of Justice, Ridvan Message 150.•Reality is for people who lack
imagination.--???•If you are killed, you win heaven; if you triumph, you enjoy the
earth; therefore, Arjuna, stand up and resolve to fight the battle!--Krishna, The
Bhagavad-Gita

Mobility,

Ergonomics &

Multitasking

in

Text Entry

A Senior Thesis in User

Interface Design

Krispin Leydon

Advisor: Ted Cooley

Dartmouth College

Spring 2000

Table of Contents

A Abstract

B Introduction & Need Statement

C Beneficiaries

D Specifications

E Additional Considerations

F State of the Art

G Path to a Selected Alternative

H Design & Implementation Methodology

I Evaluation Methodology

J Preliminary Research

K Prototype 1: Development & Evaluation

L Design Changes & Refinements

M Prototype 2: Design & Development

N Developing a Chord-to-Character Map

O Final Evaluation

P Future Work

Q Resources

R Revised Project Time Line

Appendices

1 Keyboard History

2 Psychological Considerations

3 Ergonomic Considerations

4 Initial Brainstorm

5 Typing Habits Survey & Results

6 Shape Survey & Results

7 Thermaforming

8 Microprocessor Code, Prototype 1

9 Electronic Schematics, Prototype 1

10 Hand Size Histogram Code

11 Weight Survey & Results

12 Microprocessor Code, Prototype 2

13 The PC-AT Keyboard Protocol

14 Electronic Schematics, Prototype 2

15 Chord "Intuitiveness" Test Code

16 Chord Mapping Code & Data Files

17 Calculator Learnability Test Code

18 Final Prototype Survey & Results

19 RF Safety Analysis

20 Human & Device Side Decision Matrices

Section A

1

Mobility, Ergonomics & Multitasking in Text Entry
A Thesis Investigation in User Interface Design

Krispin Leydon
Winter '00

ENGS 87, Dartmouth College
Advisor: Ted Cooley

Abstract
 Of all the human interface devices (HIDs) commonly found with a personal computer, the
keyboard has changed the least. Its design remains nearly identical to the QWERTY
keyboards people have used since the development of the first production typewriter in 1874
(2, 32).
The proliferation of tiny portable and embedded computer systems, the explosion of
repetitive stress injuries (RSIs) corelated to keyboard use, and the value placed on mobility
and the ability to multitask in the emerging knowledge based "virtual" workplace are
creating a stronger demand for portable, user-friendly, flexible and ergonomic HIDs than has
ever existed.
A number of alternative interfaces vie to replace the ubiquitous QWERTY design,
including optimized key layouts, ergonomic keyboards, voice & handwriting recognition
software, body-motion capture devices, and "chording" keyboards: keyboards that require
fewer keys, but require simultaneous key strokes to identify a character. Direct mind
control of computers through nerve impulses is becoming a reality, but this technology
belongs more to the future than to the present (6). Each of these alternatives has advantages
over standard keyboards, however no combination of advantages has been strong enough to
challenge the inertia held by standard keyboards. No solution currently available on the mass
market intregrates ease of use, speed, portability, flexibility and ergonomic design
comprehensively in one design.
Over the course of the past two terms, I've conducted a thesis investigation in the field
of man/machine interface design. The primary goals of this investigation were:
1) To obtain an introduction to human factors and usability engineering.
2)To refine an understanding of the specific interface design problem I cared about
adressing.
3)To design a sound process by which an effective solution might be reached.
4)to design, construct and iteratively refine mock-ups and prototypes that
constituted movement towards an effective solution.
5)Formal evaluation of a final prototye.
6)An informal investigation of the final prototype's potential applications.

Section B

2

Introduction & Need Statement

The standard QWERTY keyboard has become a major
limiting factor in individual human-computer
interaction. The common keyboard constrains mobility,
impedes manual multitasking, and threatens human
health. The shortcomings of the standard keyboard
interface are made obvious by several current trends:

Trend 1: Virtual Office, Mobile Workers &
Personal Digital Assistants

The nature of work and work environments is
changing. There is a growing demand for "knowledge-
based work", work that requires access to
information, but does not demand a set work
environment. Advances in technology are making
nomadic work possible, and a growing number of people
are choosing to work on the fly. According to a
recent article in Communications International, "75%
of professional managers and knowledge-based workers
[are] able to [work while] on the move "(22). A 1998
study by Lasalle Partners Inc. forecasts that
"Telecommuting [will] more than double in the next
three years, and employee participation in the
virtual office concept is likely to increase by about
77%"(23).

The ultra-mobile Personal Digital Assistant (PDA)
computers fueling the shift toward mobile work
patterns represent one of the most dynamic, fastest
growing areas in personal computing. According to
DataQuest Inc, "world-wide handheld computer
shipments are forecast to exceed 5.7 million units
this year [1999] a 47% increase over 1998"(24). By
2003, PDA sales are expected to reach 7.2 billion
(US)(24).

Section B

3

A standard QWERTY keyboard can be reduced in size
only so far before effective typing becomes
impossible. As the number of PDAs too small to
accommodate standard keyboards grows, the development
of alternate methods of text entry becomes crucial.

Trend 2: The Repetitive Stress Injury Epidemic

Standard keyboards force a user to maintain a set
posture while typing, and this requirement can stress
the body in unhealthy ways. The long term effects of
this stress--poor muscle tone, poor blood
circulation, back pain and repetitive stress injuries
(RSIs)--can be physically and psychologically
devastating(12 & 27). OSHA predicts that this year,
"nearly 3 million workers will file...claims for RSI
and back injuries"(17). The number of reported RSI
cases rose 42% between 1978 and 1990, according to
the U.S. Bureau of Labor Statistics(27). Considerable
financial cost accompanies the physical and
psychological consequences of RSI occurance.
According to OSHA, compensation "will cost
employers...more than $20 billion(US) in direct costs
and maybe another 100 billion in indirect costs"(17).
The ergonomic shortcomings of the standard keyboard
interface are partially responsible for the
widespread RSI epidemic.

Trend 3: The Growing Importance of
Multitasking

Modern living favors the ability to multitask.
The linear, industrial, relax-and-read-the paper-on-
Sunday-afternoons past has given way to a non-linear,
post-industrial future where channel-surfing, eating
breakfast and perusing the newspaper all coexist
comfortably within the same moment. Multitasking is
not just a preference; it is a prized skill in modern
working environments. According to Bennie Thayer,

Section B

4

President of the National Association for the Self-
Employed, "The ability to perform many functions at
once is absolutely necessary"(26). Multitasking is
especially valuable in scenarios where human and
computer talents are combined: According to
Microsoft, at any given time, a typical office user
will run more than three
programs...simultaneously(14). In an era of extreme
multitasking--when "the inability to walk and chew
gum [has become] cause for derision"--the fact that
efficient use of a standard keyboard requires "all
two" of a user's hands is a disadvantage (1, 167).

Trend 4: Intollerance Toward Invasive,
Pervasive Technologies.

The rapid proliferation of digital devices
without thorough knowledge or consideration of
social/psychological factors has aggravated
inclinations toward technophobia which must be
addressed within any effort to design an improved
text-input interface.
Digital devices demanding human interaction appear in
a wider variety of contexts with greater frequency
daily. Given that 1)the design of these tools often
takes place without sufficient knowledge or
consideration of context, and 2)there exists an
undercurrent sociological anxiety related to computer
control and human identity (see Appendix 2), new
digital devices are often perceived to be annoying,
disturbing and invasive. Miniature wireless headsets
introduce the social discomfort of not knowing
whether someone is in a local or remote conversation.
PDA use in conferences sparks accusations of "video
gaming" while on the job. Cell phones are now banned
from many schools and restaurants, where people are
weary of one-sided conversations and the intrusion of
business in social and academic settings. As "smart"
devices demanding human interaction infiltrate more

Section B

5

and more niches in individual and social life, the
importance of developing interfaces that are socially
and psychologically acceptable becomes crucial.

There exists a need for an effective text input
device for computers that is highly portable,
ergonomically correct, psychologically & socially
acceptable and conducive to multitasking.

Section C

6

Beneficiaries
The primary beneficiaries of any solution

effectively solving the problem previously stated
include people who need to type while on the move,
people concerned about preventing the onset of
repetitive stress injuries, people engaged in
activities where manual multitasking while typing is
an advantage, and people who think & communicate best
while not in a stationary environment sitting at
static posture. This subset of the general
population includes members of the following groups:

• On-site reporters
• The growing knowlede-based work force
• Delivery men and women
• Field researchers
• Secretaries
• Data entry personnel
• Programmers
• Businessmen
• Students
• New-media professionals

Secondary beneficiaries include loved ones of
those at risk of developing RSIs, (the emotional and
psychological strains brought on by intense carpel
tunnel syndrome and other RSIs can be enormously
taxing on a spouse or family), healthcare systems and
taxpayers (who pay for recovery from RSIs). Other
secondary beneficiaries include organizations
depending upon a mobile work force: multinational
corporations, social and economic development
foundations, and the news reporting industry.

Great ideas are lost daily when not recorded.
Children's author Roald Dahl (Charlie and the
Chocolate Factory, James & The Giant Peach)
recognized this, and attributes his imaginative works
in part to his willingness to record ideas upon their
conception, even if this meant stopping a car and
jotting notes in the dust of the rear windshield when

Section C

7

paper and pencil were not to be found. Today, a great
number of ideas (literary, musical and otherwise)
pass through digital processing and conversion before
actualization. The more convenient this translation
process becomes, the greater an idea's chances of
realization. The existence of a portable, highly
usable typing solution would facilitate the
preservation and communication of people's
inspiration in addition to information.

Section D

8

Specifications

A sound solution to the need as stated fulfills
the following specifications:

1) Portability

• Weight: <297g. (This value is based on the results
of a weight survey that appears in Appendix 11).

• Size: <16cm maximal dimension, volume<14cm3,
Interface fits inside a small handbag or large coat
pocket.

• Durability: Water resistant--capable of surviving
one minute of operation in a shower. Shock
resistant--will survive a 1m fall onto a concrete
floor. Temperature resistant--operates within a
range of 0-370C.

• Range of Operation Between Interface and Computer:
Minimum range >2m, without intervening obstructions

• Typing Session Duration: The interface will support
typing sessions > 6 hrs in length without the user
having to stop to consider interface power
requirements. (Six hours is longer than most
people spend typing over the course of a day,
according to survey results presented in the
"Preliminary Research" section of this paper).

2) Health & Safety

• Ergonomic Correctness: The Interface allows the
user's wrists and upper body to maintain neutral
position. The interface does not demand static
posture or restrain body motion. Actuation of
characters does not require excessive motion or
force. (See Appendix 3 for validation and
explanation of these criteria).

• Physical Safety: The interface contains no sharp
edges. Normal operation of interface does not

Section D

9

introduce toxins into the user's body or subject
the user to radiation levels exceeding the limits
outlined by the FCC.

3) Acceptability

• Wins head-to-head against any other design in the
same survey group of potential users as the "most
acceptable" solution.

4) Effectiveness

• Learnability: The interface's system of text entry
can be learned by potential users--at a basic
level--in 5 hours.

• Speed: After 10 hours of use, typing at 15 words
per minute (including error-correction time) must
be possible for the potential user. After 20
additional hours use, typing at an average speed of
30 words per minute (including error correction
time) must be obtainable by a potential user.
[NOTE: These figures are based on comparable
learnability and speed figures given by the
manufacturers of competing text entry systems such
as Infogrip (The BAT), Handykey (The Twiddler), and
DDH Software (Palm Pilot "WPM" system)].

5) Multitask-ability

• The interface will facilitate the user's ability to
independently utilize voice, hands and body, while
typing, to a greater degree than competing text
entry systems.

Section D

10

6) Feasability

• It must be possible to develop and test at least 2
prototypes within real world constraints.

7) Financial Costs

• Development Costs: Development costs will not
exceed $600US, presuming existing Thayer School
resources.

• Estimated Mass Production Cost: The estimated cost
of a product based on the final prototype must not
exceed $100US--a price competitive with the prices
of special feature text input devices currently on
the market, such as the Twiddler and BAT(both
$199US, from Infogrip and Handykey respectively).
Product cost estimates will be made by acknowledged
experts based on a hypothetical production run of
100,000 units.

Section E

11

Additional Considerations

Although the quantified specifications will make
possible measurement of the project's progress, these
specifications will not be the only factors weighed
within the project's decision making process. Several
additional considerations that resist quantification
will influence design decisions.

Simplicity:
Design will adhere to the Occam's Razor

principle:the simplest solution tends to be the best.

Extendability:
Where possible, the design will invite extension

in the way of increased functionality and a wider
range of potential applications.

Psychological Considerations:
Given the psychological considerations discussed

in the introduction and elaborated upon in Appendix
2, it is important that the nonverbal language of the
interface's design communicate a sense of control to
the user, and NOT a sense of being controlled. To
this end, the interface must not physically envelop
the user's appendages in the way that chording
keyboard gloves and virtual reality gear do.

Section F

12

Background & State of the Art

A number of text-input interfaces exist which
partially solve the need for a mobile, ergonomic
typing solution. Presented below are brief
descriptions of the functionality, strengths and
weaknesses of some of the most promising text entry
interfaces that are currently available and will be
available in the near future.
[NOTE: Many of the input interfaces discussed are
packaged within computing devices with output,input
and processing capabilities. Only the input aspect of
each device will be discussed, as the scope of this
project does not include output or processing.]

Current State of the Art
A Miniature Keyboard
The Series5MX, Psion

This well-engineered mini-keyboard partially addresses
portability and ergonomic issues, but does not facilitate
manual multitasking while typing.
Advantages:
• Extremely well designed

miniature keyboard

Disadvantages:
• Requires a stationary

surface
• Fingers obscure view of keys

Section F

13

A Miniature Thumb Keyboard
The "Blackberry" Interactive Pager, Research In
Motion

The Blackberry thumb keyboard is conceptually similar to the
Series5 mini-keyboard, however its keys are actuated by thumb
presses. This leaves fingers free to support the unit, thus
typing without a stationary work surface is possible.
 Advantages:
• Portable
• Compact
• Does not require a

stationary work surface

Disadvantages:
• Slow typing speed
• Thumbs obscure keyboard view
• Operation requires two hands
• Requires all but advanced

users to look at the
keyboard

Handwriting Recognition
The Palm Pilot "Grafiti" Interface,3Com

The Grafiti Interface is an example of "half way" handwriting
recognition: It recognizes highly stylized characters written
with a stylus on a touch-screen.
 Advantages:
• Very easy to learn
• Similar to handwriting
• Portable

Disadvantages:
• Slow text entry speed
• Requires two hands
• Skill and concentration

required

Section F

14

Stylus "Soft" Keyboard
The "Fitaly" Interface for the Palm Pilot,
Textware Solutions

The "Fitaly" text entry interface for the Palm Pilot is a
touch-screen keyboard designed to be operated with a stylus.
It is optimized to minimize key to key finger travel, and
places frequent letters near center-screen.
Advantages:
• Easy to learn
• Faster and more accurate

than handwriting recognition
• Portable
• Minimizes hand motion

Disadvantages:
• Requires user to look at

keyboard
• Requires two hands
• Limited character set; does

not allow for punctuation or
navigation

Voice Recognition
Dragon Naturally Speaking, Dragon Systems

Voice recognition has become a feasable, powerful way to enter
text in recent years. The Dragon Naturally Speaking system
requires a training period during which adaptive software
algorithms "learn" how to accurately interpret one's speech
patterns as text.

Section F

15

 Advantages:
• No hands required
• Allows manual multitasking

Disadvantages:
• Requires a quiet environment
• Can't multitask vocally

while typing
• Maintaining privacy becomes

an issue
• Not currently a portable

solution
• Initial training required.

Training can be expensive--
for business units it
typically costs on the order
of $1,500(34)

Desktop Chording Keyboard The BAT, Infogrip

The BAT is a one-handed typing solution. Key combinations--or
"chords"--actuate characters. The design makes possible
manual multitasking with the off hand, but is not portable,
and has significant ergonomic flaws.
 Advantages:
• Requires only one hand
• Bare bones simple design

capable of initiating any
keyboard action

Disadvantages:
• Initial training required
• Not portable
• Requires a stationary

surface
• Keys provide no tactile

response before bottoming
out

Section F

16

Hand-Held Chording Keyboard & Mouse
The Twiddler, HandyKey

The Twiddler facilitates manual multitasking, and greater
mobility than a standard keyboard (it is a wire-tethered
device). The Twidler's versatility comes at the expense of
simplicity and sound ergonomic design. The physical keyboard
interface is significantly more complicated than that of the
BAT, and use of the Twiddler does not allow a neutral hand
position.
 Advantages:
• Does not constrain body

posture or position
• Allows manual multitasking
• Great one-handed solution to

keyboard & mouse needs

Disadvantages:
• Initial training required
• Limited portability
• Poor ergonomic design
• A complicated plethora of

actuator switches

Near-Future State of the Art
In addition to the interface solutions currently

on the market, there are a number of text-entry
interfaces in development that address aspects of
need for a portable ergonomic typing solution that
facilitates multitasking. The interfaces below
represent some of the best solutions that may be
available in the near future.

Section F

17

Virtual Keyboard Receiver
Berkeley Sensor & Actuator Center

Ten battery powered MEM accelerometers glued on finger and
thumb nails transmit position information to a desktop
receiver, which is then decoded as characters. Some interface
designers believe the best interface is no interface at all.
This typing interface comes close to that supposed ideal.
 Advantages:
• Does not constrain body

posture or position at all
• No mechanical parts to wear

out.
• Allows for manual

multitasking

Disadvantages:
• Key presses are not

accompanied by tactile
feedback

• Is a wired device--not
portable

• Fingernails grow
• Does not yet exist--still a

hypothetical solution

One Handed Mobile Chording Keyboard
The Data Egg, E2 Solutions

The Data Egg's text entry interface is a one handed, wireless,
chording keyboard which allows greater mobility and manual
multitasking than most other interfaces.
 Advantages:
• Portable
• Compact
• Wireless
• Allows manual multitasking

with the off hand
• Does not constrain body

motion

Disadvantages:
• Initial training required
• Ergonomics have yet to be

optimized
• Hand fatigue after 1/2 hour

use
• Is currently in development

and not yet available on the

Section F

18

• Requires only one hand
• Extremely flexible and

extendible

mass market

Summary
Each of the above solutions addresses one or more

aspects of the problem, but no solution currently
available offers a comprehensive solution to the
compound problem of mobility, multitasking &
ergonomics in text entry. The Data Egg is the best
solution presented, however there is room for
improvement regarding its ergonomic design.

Section G

19

Path to a Selected Alternative

The process of choosing a potential solution to
implement involved first brainstorming potential
solutions, second evaluating these alternatives, and
finally, choosing one potential solution for further
development.

1) Brainstorming

The path to a selected alternative did not
chronologically begin with a brainstorm, however when
the project ground to a halt and creativity ran dry,
a brainstorm became necessary. The act of
brainstorming--imagining various possibilities
without regard to real world constraints--created a
greater volume of options to consider. This greater
volume improved the chances of choosing a great
solution to focus upon.
Shown on the following pages are thumbnails of
concept sketches illustrating some potential
solutions. Full size sketches together with
explanatory text appears in Appendix 4.

"Reality Bats Last"
--Alan Cooper,
The Inmates are Running the Asylum

Section G

20

Concept Sketch "Thumbnails"

Section G

21

2) Evaluation of Alternatives

In order to facilitate the decision-making
process, the project was parsed in two halves: "Human
Side" and "Device Side". The human side of the
interface consists of all a potential user touches,
sees, feels, and interacts with, while the device
side concerns the underlying electronic
implementation.

Human Side Decision Path

Choosing a human side implementation involved
making a number of decisions. For each decision, the
alternatives were evaluated using a decision matrix.
The structure of the decision matrices is as follows:
Alternatives appear on the X-axis of an XY table,
while design considerations appear on the Y-axis.
Each alternative/consideration cell contains a number
representing the alternative's "score" with respect
to the associated design consideration. (Scores
represent the guesses of one person). The totals of
each alternative score row are summed--taking into
consideration different numeric weights for different
specifications--and the alternative with the highest
total is deemed the "best" solution.

The human side decisions and their outcomes are
shown below, while their corresponding matrices
appear in Appendix 20. Selected alternatives appear
in red, bold face type.

1: INTERFACE METHOD?
• Voice • Eye movement • Body movement
• Nerve Impulses • Hand/Finger Movement

2: INTERFACE TOPOLOGY?
• Wearable (suspenders, gloves, etc.)
• No Physical Interface • Handheld, two handed
• Handheld, one-handed

Section G

22

3: ACTUATION TYPE?
• Linear motion • Linear force
• Discrete motion • Discrete force
• Discrete motion & force

4: DISCRET CONTROL SCHEME?
• Serial Code (example: Morse code)
• Rotary Selection (like a label maker)
• One Actuator per Character
• Combinatory Actuation (Chording)
• Rotary Selection with Combinatory Actuation

[NOTE: Initially, the fifth option, Rotary Selection
with Combinatory Actuation, was not considered.
Through development of the first prototype--which
relied solely on chording--this fifth option was
"discovered" and subsequently used to create the
final prototype.]

5: ONE-SIZE-FITS-ALL OR ADJUSTABLE?
• One Size Fits All
• Adjustable

6: INITIAL CHORD-TO-CHARACTER MAPPING?
• Adapt a pre-existing one-handed chord map
• Develop a new mapping scheme
[Note: This decision is a consequence of choice #4,
thus it has no corresponding decision matrix].

Section G

23

Device Side Decision Path

Device side decisions were made using the same
approach as human side decisions. Their outcomes are
shown below, and their corresponding matrices appear
in Appendix 20. Selected alternatives appear in red,
bold face type.

1: DIGITAL DESIGN APPROACH?
• VLSI
• State Machine & Combinational Logic
• Micro-Controller and High Level ICs

2: TETHERED OR WIRELESS?
• Wired
• Wireless

3: WIRELESS MEDIUM?
• Infrared
• Ultrasound
• Radio

4: PROCESSING LOCATION?
• Handheld Unit
• Device Being Interfaced (via software)
• Base Station Unit

5: PROCESSOR ARCHITECTURE?
• USB-specific processor
• 8051

6: FIRST PORT?
• MacADB • USB • AT • RS-232

7: SECOND PORT?
• MacADB • USB • AT

Section G

24

8: AT PORT METHOD?
• Tap into key matrix of existing PC keyboard
• Pipe RS-232 data through a software or hardware
"wedge" to get PC-AT signals. (Wedges are commonly
used to import data from bar-code readers).
• Learn the PC-AT protocol

3) Selected Alternative

The outcome of human side and device side
decision making proceses was the following solution:

A one-handed, hand-held interface operated via
finger motion and force. It uses chording and rotary
selection in combination to actuate the transmission
of characters from man to machine.

This wireless handheld interface will send
information via radio signals to a base station 8051
architecture microprocessor circuit that maps finger
chords to characters, then sends these characters to
a "dumb terminal" window via RS-232 communication.
Once the above solution has been successfully
implemented, a PC-AT keyboard port will be added.

Section H

25

Design & Implementation Methodology

Human Side
Due to the number of variables and unknowns

involved in ergonomics, interface design and man
machine interaction, a heuristic, iterative model-
based approach was chosen for the human side design
process. This methodology pits numerous designs with
different traits against each other, and permits a
solution to emerge through a process akin to natural
selection. (A general diagram of this process appears
on the following page).

The specific iterative process for this project
appears following the general diagram. This process
involves the following steps: 1)developing a shape,
2)choosing a method of actuation and actuators,
3)determining the device's texture and feel, and
4)finishing touches. Between each step, the
question: "Did the last step move the device closer
to meeting specs?" will be informally answered. If
the answer is no, the last step will be repeated
until the answer is affirmative. During early
iterations emphasis will be placed on shape. Later
iterations will emphasize texture, feel and finishing
detail. Later iterations will be formally evaluated
according to the tests presented in the "Evaluation
Methodology" section, while earlier iterations will
be evaluated informally. The choice to informally
evaluate earlier prototypes was made in order to
a)make more time for prototype development, b)prevent
test & survey subjects from becoming annoyed early on
during the iterative development process.

Early iterations of the human side interface will
be created through the use of foam mock-ups, epoxy
molds and the process of "thermaforming": creating
hollow plastic shells of mold forms through the
application of heat and vacuum pressure. (See
Appendix 7 for an elaboration on this process). If
time permits, later iterations will be "reverse

Section H

26

Iterative Design Approach

Section H

27

Human Side Design
Methodology

SHAPE

ACTUATION

TEXTURE & FEEL

FINISH DETAIL

Design's Weakest
Aspect?

Closer to
meeting specs?

N

Y

Closer to
meeting specs?

N

Y

Closer to
meeting specs?

N

Y

Closer to
meeting specs?

N

Y

Section H

28

engineered": converted to mathematical models
known as point clouds that can easily be scaled,
manipulated and regenerated using CAD software and a
rapid prototyper (3D printer).

Whenever possible, off-the-shelf components will
be used.

Device Side
The device side design methodology consists of

three convergent parallel efforts: 1) Power
electronics, 2) RF link electronics, and 3)
Microprocessor Electronics & Software. A diagram
depicting these three efforts, their convergence and
their integration with the human side interface
appears on the following page. Modules will be
debugged separately, and evaluated in conjunction
with each iteration of the human side of the
interface.

The underlying electronic implementation of the
hand unit consists of a power supply, seven
actuators, a parallel-to-serial encoder and a digital
radio transmitter. Essentially, this circuit block
is a set of switches, at a distance. A block diagram
of this arrangement follows the "Device Side Design
Methodology" diagram, and its derivative circuit
schematics appear in Appendices 9 and 14. (These
appendices correspond to prototypes 1 and 2
respectively).

The electronic implementation of the base station
is also relatively straightforward. The primary parts
include a digital radio receiver, a serial->parallel
decoder, a microprocessor and an RS-232
Buffer/Inverter. A block diagram of the base
station's electronic implementation appears following
the hand unit block diagram, and its derivative
circuit schematics appear in Appendices 9 and 14.

 During early prototypes, a "test board" for a
class on microprocessors (ENGS62, Dartmouth College)
will be used, since it already incorporates an 8051

Section H

29

Device Side Design Methodology:
Electronics, RF & Software

POWER
ELECTRONICS

MICROPROCESSOR
ELECTRONICS
&SOFTWARE

 RF LINK
ELECTRONICS

Design in
Micro-Sim

Breadboard
& Test

Design in
Micro-Sim

Breadboard
& Test

Wire-Wrap
& Test

Wire-Wrap
& Test

Write & test functions
for:
• Key detection
• Debouncing
• Chord->Character

Mapping
• Typematic Repeat

Implement RS-232
Serial

Communication

Power, RF, and
Microprocessor

Integration

HUMAN-SIDE
DEVICE-SIDE

INTEGRATION

REJOICING &
CARRYING ON

Implement PC
AT Keyboard

Communication

Add
Chord-String Mapping

Section H

30

Human Side Electronics
Bock Diagram

8-BIT SERIAL ENCODER

RADIO
TRANSMITTER

FINGER-ACTUATED SIGNALS

A
N

T
E

N
N

A

Section H

31

Device Side Electronics
Block Diagram

PROTOTYPE 2 ONLY

8-BIT SERIAL DECODER

RADIO
RECEIVERA

N
T

E
N

N
A

PORT 1

8052 MICRO-CONTROLLER

IN
V

E
R

T
IN

G
5V

->
12

V
 B

U
F

F
E

R

TO PC
SERIAL
PORT

BI-DIRECTIONAL
BUS

TO PC-AT
KEYBOARD
PORT

Section H

32

architecture microprocessor, serial communications
hardware, and an operating system (MDP) for
downloading firmware from a PC conveniently in one
package.

Section I

33

Evaluation Methodology
The final prototype's quality will be evaluated

according to the following set of tests, where q
signifies a binary test and stands for a linear
test. Test outcomes fall between 0(low) and 5(high).

SPECIFICATION

PORTABILITY
• Weight
• Size

• Durability

• Range

• Typing Time

HEALTH & SAFETY
• Ergonomic

Correctness

• Physical
Safety

EVALUATION TESTS

q < 150g (weighed) + 1
q <16cm max. dimension (measured) +.3
q <14cm3 (measured) +.3
q Fits in handbag & large coat +.4
 pocket
q Survives 1 minute of operation +.3
 in a shower.
q Survives a 1m drop onto a hard +.4
 concrete floor
q Survives operation at 00C and +.3
 at 370C
q Operates @ 2m distance from + 1
 base station
q Sends text for six hours + 1
 continuously on one battery charge.

(max) 5

q Hand maintains a comfortable +.5
 resting position w/o pain.
q Neutral wrist position +.5
q Doesn't demand static posture +.5
q Doesn't demand excessive +.5
 digit motion or force +.5
q Does not restrict body motion +.5
q No sharp edges +.4
q Toxification not a significant +.3
 risk.
q Meets FCC specs for radiation +.3
safety.

(max) 5

Section I

34

Evaluation Methodology (Continued)

SPECIFICATION

ACCEPTABILITY

EFFECTIVENESS
• Learnability

• Speed

MULTITASK-
ABILITY

FEASABILITY

EVALUATION

qWins head to head against +5
other designs in the same
survey group of potential
users as "most acceptable".

(max) 5

qPossible to learn typing system +3
 at a basic level in < 5 hours.
q15 wpm average speed possible +1
 after 10 hrs practice.
q30 wpm average speed possible +1
 after 20 hrs practice.

(max) 5

While typing,
qCan multitask vocally +1.5
qCan multitask with one hand +1
qCan multitask with other hand +1
qCan multitask with body +1.5

(max) 5

qTwo prototypes developed +5
within real world constraints.

(max) 5

Section I

35

Evaluation Methodology (Continued)

Time permitting, the final prototype's scores for
each specification will be entered into a decision
matrix along with the scores of current state of the
art alternatives. A comparison of totals will
indicate the relative success of the final prototype
as a solution to the problem of mobility,
multitasking and ergonomics in text entry.

SPECIFICATION

COST

EVALUATION

q Development Cost < $600US +2
q Estimated cost of a product +3
based on final prototype doesn't
exceed $100US, given a hypothetical
production run of 1000 units.
(Cost estimates given by a panel of
experts).

(max) 5

Section J

36

Preliminary Research

Preliminary research involved a survey on typing
habits, numerous interviews, consultations and
conversations, and reading selections.

Background Survey

First, an effort was initiated to obtain data on
people's typing habits and their attitudes toward the
machines they use to type. This was accomplished
through a small-scale survey, sent to a number of men
and women, mostly between the ages of twenty and
thirty. Most were involved in academics in one way
or another, though some were involved in healthcare,
archaeology, engineering or marketing. All happened
to be of upper & middle class backgrounds, and all
had had extensive education and experience working
with computers. The survey, along with a compilation
of its results, appears in Appendix 5. The results
are summarized below.

Twenty-two people responded to the survey; 21 were
right handed, 1 reported not having a dominant hand.
The average of the respondent's ages was 27. The
majority (11) reported that their primary learning
style was kinesthetic; this learning style was
followed in popularity by visual (5) and auditory (1)
learning styles.

All people surveyed spent some time typing daily,
and daily typing durations were distributed in the
following way: 14%:.5to1hr, 36%:1to2hrs, 18%:2to3hrs
and 32%:>3hrs. Seventy-seven percent of the survey
respondents reported spending more time typing now
than five years ago. Only 14% reported not knowing
how to touch type.

Reported average typing speeds varied between 65
and 120 words per minute (WPM), with an average value
of 66 WPM. All respondents reported using a standard
keyboard for typing, and on a scale from 1(low) to
5(high) the average of the comfort ratings that

Section J

37

respondents assigned to their keyboards was 3.45.
Two of the 22 respondents suffered from keyboard-
aggravated RSIs.

The things that people liked about their keyboards
included familiarity and key characteristics:
quietness, force feedback, and light operating
pressure. People's complaints included keyboard size,
asymmetric hand use, awkward wrist position, keys
jamming, hitting two keys at once, the need for a
stable flat work surface, key noise, and numeric
keypad placement.

Respondents envisioned a number of where typing was
desirable but impractical given standard keyboards.
These scenarios included the following: "When there
is limited space and I'm on the move". "When I want
to take notes standing up or moving about". "When I
only have one hand". "When I want to record
spontaneous ideas". "So I can eat and answer e-mail
at the same time." "When I need to type equations."
"When I want to type while travelling or working
out". Respondents were asked to rate how valuable
typing while on the move would be for them on a scale
from 1 to 5(high), and ratings ranged from 5 to 1,
with an average value of 3.25.

When asked whether or not the notion of a light-
weight electronic device attached to their bodies or
sewn into their clothing would bother them, fifty
four percent of the respondents expressed concerns
about these possibilities. The concerns expressed
were: interference with style and fashion, the
inability to get away from technology, the size,
weight, expense and fragility of the wearable
devices, interference with comfort, invasion of
personal space, and the fear of being branded a nerd
or geek.

Section J

38

Interviews/Consultations

Numerous experts were consulted in order to develop
a sound design approach. Questions about ergonomics
and repetitive stress injuries were brought to Lisa
Tiraboschi, a member of the Dartmouth Environmental
Health and Safety Group. Professor Peter Robbie's
expertise was sought concerning the development of a
sound design methodology. Conversations with
Professors John Collier, Ted Cooley, Stu Trembley,
Francis Kennedy, and Solomon Diamond helped to
sharpen the project's focus and better define
specifications. Research engineer Doug Fraser
contributed advice regarding how to balance and
coordinate human and device side development efforts.
Graduate student Heather Wakely was consulted
regarding the possible value of using computer
simulation as a tool within the project's decision
making process. Informal conversations with
interface designers at Lucent Technologies, Sensable
Technologies, Cognetics, and E2 Solutions also helped
in the development of the project's design process.

In addition to facilitating the development of a
design approach, expert advice was useful in making
decisions regarding implementation. Professors Ted
Cooley and Clayton Okino were consulted regarding the
question of how best to implement the digital design
portion of the project. Software engineer Michael
Fromberger's aid was enlisted in deciding whether to
map chords to characters within the interface device
(as firmware) or within the computer being interfaced
(as software). A later consultation with Michael
Fromberger ensured that the microprocessor firmware
algorithms developed for key detection and chord-to-
character mapping were not unnecessarily complex.
Professor Charlie Sullivan's advice was sought
regarding power requirement issues and actuator
characteristics. Professor Sullivan's experience with
keyboard aggravated carpal tunnel syndrome allowed
him to articulate the physiologically desirable
characteristics of digit-operated actuator switches.

Section J

39

Pete Fontaine of Thayer School machine shop infamy
was consulted throughout the development of the
interface's physical shape. Specifically, Mr.
Fontaine lent advice concerning modeling materials
and molding techniques. Assistance regarding circuit
noise resistance, troubleshooting and wireless
communication alternatives was obtained from
Professor David Stratton. The expertise of Frank
Montegari at Glolab.com was sought regarding the
implementation and troubleshooting of an encoded
wireless radio linkage.

Reading Selections

Reading selections focused on typing machines,
interface design, ergonomics, the nature of present-
day work and the psychology of human computer
interaction. For the purpose of learning about typing
machines, the following works proved especially
valuable: The History of the Typewriter, Century of
the Typewriter, and Gramophone, Film, Typewriter (3 2
& 4). The most useful works on interface design
included Interface Zen, Usability Engineering, Human
Factors in Engineering and the Handbook of Human-
Computer Interaction(29 30 31 & 32). Faster and
numerous periodical articles lent insight concerning
the nature of typing in present day work (1 etc.).
The works most useful for the purpose of learning
about the psychology of human computer interaction
were: Gramophone, Film, Typewriter, The Inmates are
Running the Asylum, How We Became PostHuman, Computer
Anxiety and numerous periodical articles (4 10 7 11
etc.) (For a complete list of works consulted, see
the "Resources" section).

Section K

40

Design, Development & Evaluation of
Prototype 1

Human Side Development

Shape
On Professor Peter Robie's recommendation, the

human side interface effort began with the creation
of a large number of mock-ups. Before any formal
evaluation, 12 prototype shapes were constructed from
Eurathane foam. A friend contributed a 13th shape
composed of plaster of Paris. This "family" of
shapes appears in the photo below:

First Iteration of Potential Shapes

Once this first round of shapes was created, a
survey was conducted to determine the strengths and

Section K

41

weaknesses of each shape as the shape of a potential
typing solution, and to select two or three shapes to
focus on for subsequent iterations. The survey and a
compilation of its results appears in Appendix 6. A
summary of the results appears in the table below.

[Note: The criteria presented in the table differ
from the design consideration described in the
"Specifications" and "Additional Considerations"
sections because the survey was one of the tools used
to develop these considerations.]

Shape Survey Result Summary

Shape-Secific:
• Most Comfortable

Scores on 1-5(hi)
scale were averaged.

• Easiest To Pick Up
Scores on 1-5(hi)

scale were averaged.

• Easiest to Put Down
Scores on 1-5(hi) scale
were averaged.

• Easiest to Envision
Typing With

% of respondents who
could envision typing
with shape.

• Favorite
% of respondents who
chose shape as favorite.

• Most Comfortable
% of respondents who
chose shape as most
comfortable.

General:
• Tethered vs. Wireless
% of respondents who
chose wireless

Shape2 (4.2), followed by Shape3
(4.0)

Shape9 (3.2), followed by
Shapes11&4 (2.9)

Shape2 (2.3), followed by
Shape12 (2.25)

Shape2 (100%), followed by
Shapes3,11,&12 (75%)

Shape2(50%) followed by
Shape3(25%)

Shape2(50%) followed by
Shape3(38%)

Wireless(100%)

Section K

42

Shape Survey Result Summary (Continued)

The shape survey confirmed intuition; in the
estimation of their fashioner, Shapes 2 and 3 were
clearly the best suited for typing, and this
judgement was reflected in the survey results. Given
the extensive amount of time required to conduct the
survey and the fact that its results confirmed
intuition, the decision was made to base further
design decisions on intuitive judgement during early
prototype iterations. The time and effort necessary
for formal survey evaluations would be saved for
final design iterations.

The shapes chosen for further development were
shapes 2 and 3, shown on the following page:

General (Continued):

• One handed vs.
Two handed

% of respondents who
chose one-handed

• Max. acceptable weight
Average based on holding
a bag of quarters.

• Possible Device Names

One Handed (75%)

150g

DataWhistle, KeyGrip,
KeyType, ErgoHand,
DigeyBoard, HandKey, Palmer,
TeleDactyl

Section K

43

Shape 3

Shape 2

After two of the twelve shapes had been selected
for further development, a plastic "shell" of one of
the shapes, Shape3, was created using the Thayer
machine shop Thermaformer. The Thermaformer "sucks"
a heated plastic sheet over a mold in order to
reproduce the shape of the mold. Creating this
plastic shell involved cutting the chosen shape in
half, laying both halves face up on a tray, and then
positioning a flat piece of plastic above the shape
halves. After the vacuum generated by the
Thermaformer had sucked the plastic around the
contours of the shape, it became evident that the
reproduction was not ideal. The suction pressure had
partially deformed the foam shape halves, and the
thickness of the molded plastic was great enough to
prevent accurate replication of sharp corners. As a

Section K

44

result of these problems, the first molded plastic
shell was not an accurate reproduction of the
original foam model, and did not conform naturally to
the hand. A picture of the foam mold halves,
together with the faulty first plastic shell, are
shown in the photo below. The shell is black, while
the mold halves are white.

After the first effort to create a plastic shell,
a new molding technology presented itself. Pete
Fontaine suggested creating molds from a special two-
part epoxy--"Apoxie®" produced by Aves®--instead of
eurathane foam. Apoxie® can be shaped like
industrial modeling clay during a four hour period,
after which it hardens and can be cut, sanded and
milled like hardened plastic. This material proved
an ideal molding material for two reasons: Since it
was harder than eurathane foam, it did not deform in
the Thermaformer. Because the material could be
formed by hand like modeling clay, the creation of
shapes that felt "right" in the hand was facile.

Section K

45

Using the newfound molding material, two more
shapes were created, based on the two best shapes
from the first iteration (Shapes 2 & 3). One of the
two new epoxy shapes was inferior to the two shapes
that had inspired it. This shape was rejected. The
other new shape felt more comfortable in the hand and
allowed digits a greater freedom of motion than any
previous shape. This shape was selected to be the
shape of the first functional wireless prototype. The
two epoxy shapes appear in the photos below. The
photo on the left shows Shape2 from the set of first
iteration shapes, a lump of modeling clay, and the
rejected epoxy shape. The right-most photo shows
Shape3 from the set of first iteration shapes
together with the selected epoxy shape.

The selected epoxy shape from the right-most
photo was halved and placed in the Thermaformer to
create a new plastic shell. During this molding
attempt, a thinner plastic was used so that the
mold's corners and sharp edges would be more
accurately reproduced. The result was a plastic
shell of the desired shape, with fewer imperfections
than the previous shell contained. The new shell
held enough space for actuator switches, power supply
and electronics. This shell appears in the following
photo, together with its rejoined epoxy mold halves.

Section K

46

Actuators
Once an adequate shell for the interface had been

created, development efforts turned toward actuator
switches. The process of selecting actuator switches
began in the same spirit as the process of selecting
a shape: with many options, each with one or more
distinguishing traits. Some actuators were procured
as free samples from Cherry Corporation Electronics
while others were bought. Shown in the photo below
are a number of the actuators considered for the
first functional prototype.

Section K

47

In the interest of quickly creating a working
prototype before the end of the term, the simplest,
smallest, most easily mounted switch, Switch6, was
chosen for the first prototype.

Had there been more time, actuators would have
been chosen based on criteria gathered from the
background survey and conversations with professor
Charlie Sullivan. These criteria were as follows:

Criteria for Actuator Selection
• Tactile Feedback: Actuators provide user with soft but

discernable tactile feedback when contact is made.
• Noise Level: Actuators are quiet, if they provide any

auditory feedback at all.
• Actuation Force: The force necessary to actuate is weak

enough so that typing does not require great exertion, but
strong enough to prevent inadvertent typing when picking up
and putting down the device.

• Consistency and Reliability: Actuators have uniform
characteristics, and perform consistently.

Section K

48

Device Side Development

Software
Development of the device's underlying

implementation began with the development of
microprocessor firmware which received as input seven
finger & thumb actuator signals--one for each finger,
three for the thumb--and sent characters as output to
a dumb terminal via the RS-232 communication. The
one-button-per-finger three-button-per-thumb
configuration made possible the option of initially
using an accepted, proven chord/character map
developed by Dr. Daniel Gopher, an "internationally
recognized expert in human factors and motor skills"
for Infogrip(32). This decision temporarily narrowed
the scope of the project without precluding a future
effort at creating an optimized finger-
chord/character map.

[Note: The chord map developed by Dr. Daniel
Gopher was ultimately not used. There was not time
to implement a full chord map for the first
prototype; only a few chords were mapped to
characters as proof of the concept.]

The microprocessor firmware was developed in C,
using the Keil µ-Vision programming environment and
compiler. The key functions developed were:

• timer0_isr (void) -- An timer driven interrupt service
routine used to count 1 millisecond.

• chord_is_changing () -- A routine which returns TRUE if the
chord is changing.

• settled () -- A routine that returns one when the current
chord remains constant for a set ammount of time.

• auto_repeat () -- A routine that allows "typmatic" action:
the repeated typing of characters by keeping one chord
pressed.

• translate (byte chord) -- A function that maps chords to
characters.

• send_char () -- A routine that sends a character from
microprocessor to dumb terminal.

For complete code listings, see Appendix 8.

Section K

49

Once the functions had been written and various
compilation annoyances worked out, the program was
placed within the memory of an "ENGS62 Test Board": a
circuit used for a course on microprocessors. This
test board contained an 8051 arechitecture
microprocessor and all the necessary hardware for
serial communication, and thus served as a useful
test platform. A picture of the ES62 test board
appears in the left-most photo below. For debugging
purposes, a "button board" was assembled in the
machine shop, and connected to Port 1 of the test
board's microprocessor. This wired keyboard appears
in the right-most photo below.

ES 62 Test Board Wired KeyBoard

Electronics
The principle challenge in the first prototype's

electronic development was finding the necessary
parts. After some searching, wireless transmitter
and receiver modules were procured from glolab.com on
the recommendation of graduate student Whitmore
Kelley.

In order to separate human and device side
development efforts, it was decided that the hand
unit would contain switches-at-a-distance, and that
the base station would be responsible for all signal
processing. This decision meant that if at some
point an extra chip were needed for processing, or

Section K

50

perhaps an extended chord/character map, the
relatively tight size and weight restrictions imposed
by the hand unit would pose no problems.

Two special purpose chips made the switches-at-a-
distance implementation possible: an 8-bit parallel-
to-serial encoders and its matching serial-to-
parallel decoder (part numbers HT640 and HT648L
respectively). These chips were discovered by
Glolab, made by Holtek, and procured through Jameco.
The encoder and decoder have several convenient
features. They send information in bytes--one bit
more than the 7 necessary for the first prototype.
The chips send and receive information in an encoded
fashion and do basic error checking--this prevents
faulty transmissions or interference signals from
being interpreted as valid chord combinations. In
addition, the standby power requirement of these ICs
is on the order of 1µA. This low power requirement,
coupled with the comparable low power requirement of
the wireless transmitter, made the need for an off/on
switch on the transmitter effectively unnecessary--a
convenient simplification for the user.

Block diagrams for the electronic design of the
Prototype1 hand unit and base station appear in the
"Design Methodology" section, while circuit
schematics appear in Appendix 9. Photographs of the
implemented circuits appear below.

Base Station(Fits in Test Board) Hand Unit

Section K

51

Integration

Once the software, human side interface and
underlying implementation had been created,
integration of the first functional prototype became
possible. This involved connecting the shell's
actuator switches to the hand unit electronics,
plugging in the 3V AAA battery power supply, and
temporarily sealing the shell halves with tape. The
first fully functional hand unit appears in the four
photos below.

Once the hand unit had been assembled, the base
station circuitry was plugged into the ENGS62 test
board, and the test board connected to power and a PC
serial port. To the delight of this developer, the
system worked!!! Different combinations of finger

Section K

52

presses resulted in the appearance of characters in a
PC dumb terminal window, and remote typing could be
done while stretching, walking about the room or
having a coke.

Evaluation of Prototype1

The strengths of Prototype1 were that it
demonstrated the feasibility of a wireless, one-
handed text entry system. The hand unit was sturdy
and its shape comfortable for various hand sizes. It
was extremely light--so light that many people asked
if the unit held electronics yet.

The weaknesses of the interface were numerous.
Most of the people who informally tested the device
found that operating thumb buttons while holding the
device steady was awkward and challenging; it seemed
that the user's thumb could be used to hold or to
actuate, but not to do both simultaneously. Another
design weakness was that the effectiveness of its
buttons was critically dependent on hand size.
Buttons had to be accessible to the user's
fingertips, but there were great variations in user
finger length. This factor made the positioning of
buttons an issue of critical importance for future
development efforts. Other less critical weaknesses
included the device's aesthetics (it resembled an
alien cow udder) and a data latching problem that
caused the device to get "stuck" auto-repeating
characters. (This latching problem is discussed in
the following section).

Section K

53

Problems Encountered During the Development of
Prototype 1

Expectedly, numerous problems were encountered.
Unexpectedly, most of them were solved. The problems
fall in three general categories: process problems,
human side problems, and electrical/software
problems.

General Process Problems
By far the most difficult problems encountered

were problems of process. Given the developer's
enthusiasm for the project, the wide range of
potential applications and the number of tangents
worth investigation, it was extremely hard to develop
a clear, specific and concise understanding of what
mattered. Numerous conversations and need statement
revisions were required to clarify the design
problem.

Quantifying specifications was another difficult
hurdle. Since the project was in essence an
interface design project, subjective judgement of
potential users necessarily carried weight. In a
sense, the user's subjective sense of the device's
weight (for example) was more important than the
device's actual weight. Because issues of perception
and subjective judgement mattered, the project became
a constant effort to balance engineering as an art on
one hand, and engineering as a science on the other.

Another process problem encountered was poor
survey design. The logistics of giving surveys and
compiling survey data were not given proper
consideration. As a result, time was wasted and
nerves were frayed.

Section K

54

Human Side Problems
The problems encountered during human side

development of Prototype1 concerned 3D visualization
of shapes and troubles with the Thermaformer.

Creating numerous foam models helped make
possible the visualization of complex organic 3D
shapes. Unfortunately the foam models did not fair
well in the Thermaformer. This problem was solved by
making molds from epoxy resin instead of from foam.

In order to create plastic shells, models had to
be halved. Halving the models using a band-saw
removed a 2mm wide slice, and this alteration in
shape prevented shell halves from lining up
perfectly. This problem could be solved by adding
2mm of thickness to one half after splitting the mold
in halves.

Electronic/Software Problems
Initially, the key detection code was written and

compiled presupposing an 8051 microprocessor. The
8051 chip did not contain enough internal memory for
both program and the 127-character array representing
each possible finger combination. As a result, the
compiler choked. The solution to this dilemma was to
reconfigure the compiler for the chip actually being
used: The Atnel 8052 microprocessor. This chip had
double the internal memory of the 8051--enough to
hold the 127-character array in addition to the
program code.

One bug that provided great headaches was an
unrecognized difference in decoder and encoder
oscillator speeds. Oscillator speed for each IC was a
function of one resistor value, and though two
resistors of (supposedly) the same value were used,
they were not within a close enough tolerance for
decoder and encoder to cooperate. The solution was
to obtain a pair of matched resistors.

The only serious bug in the circuit design of the
first prototype resulted in the occasional tendency
of the decoder to get "stuck" sending a chord to Port

Section K

55

1 of the microprocessor. This occurs when the
transmission of the "no buttons pressed" chord fails
after a successful transmission of a "some buttons
pressed" chord. Since the decoder outputs were
latched, the old chord values remain when the "no
keys pressed" chord is desired. A solution to this
problem was to place an octal D-Latch in between the
decoder and the microprocessor's Port 1, and have the
latch outputs reset when the decoder's (active high)
"Valid Transmission" signal line goes low. The
second prototype incorporated this solution.

Section L

56

Design Changes and Refinements

Several lessons were learned from the creation
and informal testing of Prototype 1, lessons that
affected subsequent design decisions. These lessons
pertained to the role of the thumb with respect to
the hand-held unit, variability in human hand
dimensions and the weight of the hand-held unit.

Addition of a Thumb-Actuated Rotary Switch
One lesson learned from the first prototype was

that the user's thumb had difficulty supporting the
hand unit and operating its switches simultaneously.
This observation had a substantial impact on the
final prototype's design. Because of the awkwardness
of the thumb's dual role, the decision was made to
have the thumb exert control over a rotary "case
selection" switch instead of pushbuttons. This
decision had several benefits; it made possible
improved grip support, simpler, more natural and less
frequent thumb motion. The use of a thumb wheel also
had cognitive advantages over the use of thumb-
actuated push-buttons.

Better grip support: The use of a thumb wheel
instead of push-buttons allowed the thumb to exert
device-stabilizing pressure when necessary, with less
chance of inadvertently changing the chord being
pressed.

Simpler, more natural thumb motion: The rotary
switch reduced and simplified thumb control motion.
Instead of having to move the thumb laterally, then
downwards--as was necessary for the operation of
Prototype 1--control of the thumb wheel required
contracting the thumb at one joint: a simpler, more
natural motion.

Less frequent thumb motion: Use of a rotary wheel
gave the thumb a unique role in the chord actuation
scheme. Instead of functioning as a fifth chord-
button actuating digit, the thumb could now be used
to select from between modes (or "cases") that

Section L

57

together composed the full chord map. The task of
case selection (such as selecting between upper and
lower case letters) occurs much less frequently in
most text entry situations than the task of character
actuation. This translates into less frequent thumb
motion than was necessary given the character
actuation scheme of Prototype1. Reducing the
frequency of thumb motion necessary for character
actuation allowed the thumb to more effectively carry
out its role as a grip support.

Cognitive Advantages: The use of a rotary thumb
switch allowed the chord map to be broken into
several cases, each case holding a subset of the set
of characters. This grouping of characters in
smaller subsets increased the usability and
learnability of the design. Since each subset (case)
of characters has fewer members than the full
character set, fewer buttons are required to define a
unique character than were required for the
implementation of Prototype1's chord map. Decreasing
the number of actuators and thus the number of chords
makes learning the chord map less intimidating and
more learnable. It is generally easier to learn a
system piece by piece than all at once, and the
addition of a case wheel facilitates a piece-wise
learning process. The use of a thumb-operated rotary
case selection wheel makes possible one additional
cognitive advantage: feedback concerning the current
case of the device. Through rotation, a different
section of the case selection wheel is exposed to the
user's thumb for each position of the rotary switch.
By mounting tactile symbols corresponding to case
along the case selection wheel's perimeter, it
possible for the user to "feel" the current case
through his or her thumb. This is an elegantly
simple way to provide the user with feedback
concerning the device's mode, a way that imposes no
additional power requirements on the hand-held
device.

Section L

58

Hand Size and Adjustability
A second lesson provided by Prototype1 was that

the usability of a chording system is critically
dependent on hand dimensions. If buttons are not
accessible to the user's finger tips, a chording
system such as Prototye 1 becomes awkward--if not
impossible--to use.

This problem brought up numerous questions
related to hand size: What is an "average" sized
hand? What does a "normal" distribution of hand
sizes look like? Do the project's volunteer test
subjects hands reflect this normal distribution?

To answer these questions, the internet was
scoured for "amphometric" data: data on human body
measurements. Data on hand size was found in a study
conducted at the University of Michigan(38). This
study measured hand length and breadth of numerous
test subjects. The hand length data from this study
was used to construct a histogram, and a second
histogram was created using the hand lengths of this
interface project's test subjects. These two
histograms appear on the following page. Comparison
of the two graphs reveals that the test subjects
involved in this interface design project have hands
of typical dimensions that vary over a range that is
not out of the ordinary. (These conclusions presume
that hand length is a representative hand size
dimension, and that the University of Michigan
measurements are accurate and representative of
potential user's hand sizes.)

Section L

59

Hand Length Histograms

Median: 18.65cm
StdDev: 1.25cm

Median: 19cm
StdDev: 1.5cm

Section L

60

The problem of Protoptype 1's critical dependence
on hand size with respect to actuator placement
created an ultimatum: Continue the development of a
"one-size-fits-all" implementation, or create an
adjustable solution. (The option of creating a
person-specific solution was not considered, because
it significantly reduced the quality and quantity of
feedback that potential users could give.)

The advantages of a one-size-fits-all solution
were simplicity and elegance. With few screws, wires
and other implementation-specific artifacts visible
to the user, a one-siz-fits-all solution would be
more sleek and seamless. The disadvantages of
continuing with a one-size-fits-all design approach
were presumed to be the following: 1)dependence on
specialized actuators with large, specially shaped
touch surfaces, 2)a lack of knowledge concerning hand
physiology, and 3)the risk that the final prototype
would be a mediocre solution--something designed to
fit the hand of a non-existent "average" user, but
not quite right for any real user.

The advantage of continuing with an adjustable
design would be configurability. Through
configurability, hands of various sizes and
dimensions would be accommodated. This would widen
the range of actuators that could be considered, and
meant that the design's physical dimensions didn't
have to be "perfect"; problems could be compensated
for through adjustment.

The disadvantages of the adjustable design were
complexity and fragility. Creating an adjustable
mechanism would require significantly greater amounts
of thought and effort, and configuring the device
could add complexity to the user's experience.
Fragility was a risk because a greater number of
parts would be required for an adjustable solution,
and each additional part would bring new potentials
for breakage.

Section L

61

Two concept sketches were created to illustrate
what one-size-fits-all and adjustable solutions might
look like, and these sketches appear below.

One-Size-Fits-All Adjustable

The envisioned one-size-fits-all solution has
wrap-around finger buttons, and thumb buttons that
extend outward to accommodate digits of different
lengths. This solution relies on switches with
relatively large, specially shaped actuation
surfaces.

The envisioned adjustable solution has buttons
mounted on sections of a cylinder. Each section can
be rotated to move the position of its button with
respect to the palm. Through rotation, different
length fingers are accommodated. The sketch of the
adjustable solution also incorporates the case
selection thumb wheel discussed earlier. This wheel
is mounted on an adjustable arm.

After considering the pros and cons of the two
alternatives, the decision was made to direct future
development efforts toward an adjustable solution.

Device Weight
A relatively minor change in design to the design

specifications concerned weight. The first prototype
seemed incredibly light--its lightness made the hand
unit feel insubstantial to several users. This unit
was initially designed to meet a weight (mass)

A: Large, wrap-
around buttons

A: Buttons
mounted on a
rotating cylinder

B: Case-selecting
thumb wheel

Section L

62

specification of 150g--a figure based on data
compiled from the Shape Survey (see Appendix 6). In
this survey, a bag of quarters was placed in the hand
of each participant, and participants were asked to
add or remove quarters until the bag held--in their
estimation--the "maximum allowable weight" for a one-
handed typing device. 150g was the average weight
from these test trials.

This test did not distribute weight across the
user's hand, and as a result, the first prototype--
which did distribute weight across the hand--seemed
especially light. Because of the discrepancy between
the 150g survey figure and the apparent lightness of
the first prototype, the weight survey was conducted
once more. During this second weight survey, the bag
of quarters was placed in a thin plastic shell
thermoformed from the same mold used to construct the
final prototype. Doing so distributed weight over
survey participants' hands, in a more realistic
fashion. The average "maximum acceptable weight"
figure jumped to 297g. To make a short story long,
the apparent lightness of Prototype 1 brought to
attention an oversight in survey implementation and
influenced the weight specification used to judge the
final prototype.

Section M

63

Design, Development & Evaluation of
Prototype 2

Human Side Development

After deciding upon a solution that used fingers
for chording and thumb for case selection, it became
necessary to develop an adjustable implementation.
The following sketches illustrate the hand unit's
manner of adjustability.

Final Prototype: Adjustability

Extension and Contraction Tilting
of the Finger Button Column of Finger Button Column

Rotation of Button Extenson, Contraction &
Modules on Column Rotation of Thumb-Wheel Arm

Section M

64

The first three sketches depict the adjustability
of the finger button column's design, while the last
sketch depicts the adjustability of the thumb wheel.

The finger button column is attached to the body
of the hand unit via two turnbuckle tie rods. These
tie rods are reverse-threaded on one end so that
expansion and contraction can be achieved simply by
twisting the tie rod--no disassembly or disconnection
is required. The top tie rod is attached to the
button column assembly via a ball joint, while the
bottom tie rod connects to this assembly via a "U"
shaped joint with one degree of freedom. This portion
of the adjustable design is somewhat similar to the
front suspension system of a formula car.

The thumb wheel is attached to the body of the
hand unit via an arm. A milled slot runs the length
of this arm, and by loosening the screw passing
through this slot, the arm can be extended, contracted
or rotated. Tightening the screw sets the position of
the wheel in relation to the body of the hand unit.

The button modules on the button column are
sandwiched between two plates that prevent them from
rotating. By loosening a screw at the base of the
button column assembly, the pressure between the two
plates is reduced, and button sections can be adjusted
to the desired angles. Re-tightening the screw sets
the angle of the button units with respect to the hand
unit's body.

On the following two pages are photos depicting the
development of the final prototype's human side--from an
initial foam mock-up, to the completed hand unit. The
processes used were essentially the same as those used
to make Prototype 1: Create quick-and-dirty prototypes
to test concepts, mold structural parts using the
Thermaformer, and iterate whenever possible. Care was
taken to design and build the device's sub-assemblies in
modular fashion to facilitate disassembly and repair.
Due to the organic, hand-held nature of the shapes being
constructed, CAD/CAM techniques were not employed.

Section M

65

Final Prototype: Human Side Development

 Adjustable Mock-Up Molds: Prototypes 1&Final

 Switch Candidates Finished Switch Modules

Button Barrel Evolution Case Wheel & Candidates

Section M

66

Final Prototype:
Human Side Development (Continued)

Shape Evolution Final Prototype

 Final Prototype (R) Final Prototype (L)

Open (Outer View) Open (Inner View)

Section M

67

Device Side Development

Hardware
Hardware development for the final prototype

involved refining the hand unit circuit and making a
stand-alone base station circuit with RS-232 and PC-AT
ports.

The hand unit was improved through simplification
and miniaturization. It was discovered that the hand
unit's encoder had internal pull-down resistors--a fact
that had escaped attention during the development of
Prototype 1. As a result of this discovery, fewer
resistors were included in the final hand unit circuit.
Through the use of fewer resistors and effective space
management, the surface area of the hand unit was reduced
by approximately 30%. A photo of the final hand unit
circuit appears below. For a block diagram of this
circuit, see the "Design and Implementation Methodology"
of this paper. For a detailed circuit schematic, see
Appendix 14.

Final Prototype's Hand Unit Circuit

Section M

68

Development of the final prototype's base station
circuitry was more complex. A design bug had to be
corrected and numerous functional blocks had to be added
to the board--including a microprocessor, communications
hardware and battery charging circuitry for charging the
hand unit. A photo of the final base station circuit
appears below. Its corresponding block diagram appear in
the "Design and Implementation Methodology" of this paper.
For a detailed circuit schematic, see Appendix 14.

The Final Prototype Base Station Circuit

The base station's serial->parallel decoder IC
latched the serial data it received and as a result,
finger-chord bytes were occasionally retained after their
corresponding finger buttons had been released. This
meant that the base station circuit would sometimes become
"stuck" auto-repeating the character corresponding to the
retained chord indefinitely. To solve this problem, an 8-
bit latch with an asynchronous "clear" input was placed
between the decoder and the microprocessor input port.

Section M

69

When the decoder's "Valid Transmission" (VT) output signal
went high, chord data entered the latch. When the VT
signal went low, the latch was cleared. The addition of
this latch effectively solved the auto-repeat problem.
One tricky aspect of implementing this solution was that
the decoder's VT output controlled both "clock" and
"clear" latch inputs, and a delay was required on the
"clock" signal line in order to prevent simultaneous
clearing and latching. This delay was created through the
use of a buffer, a low-pass filter and a comparator.

Creating a stand-alone base station circuit board
(independent of the ES62 test board that was necessary for
Prototype1) involved adding a microprocessor and
communications hardware. After a false start (buying a
microprocessor with half the RAM, one too few internal
timers and half the code memory necessary) the Atnel
AT89C55 microprocessor was chosen. This 8051-architecture
chip had all the necessary features, and twice the re-
programmable code memory necessary. To implement the
serial communications port, a 12V/5V inverting buffer
(Maxim's MAX-232) was used. To implement the hardware of
the PC-AT keyboard port(a bi-directional clock-and-data-
line bus), a pair of buffers (really 4 inverters, two with
open collector outputs) was used.

The base station circuit for the final prototype
incorporated battery charging circuitry for the hand-held
unit. Initially, fast-charge circuitry was desired, a
circuit that would monitor battery charge and temperature
in order to ensure fast peak charging as well as long
battery life. With these goals in mind, a sophisticated
charge-monitoring IC and temperature-sensing thermistors
were acquired. Unfortunately, the fast-charge circuitry
proved too difficult to implement within the project's
time frame, and a simpler battery charging circuit was
employed, a circuit developed and posted on the web by
Ralph Tenny of the Dallas Personal Robotics Group(37).
This charging circuit used a feedback-controlled voltage
regulator to supply a battery with constant charging
current. For the 300mAh hand unit's nickel cadmium
battery, the charge current was 30mA, and the charge time

Section M

70

was 14 hours. The circuit required a 12V power supply,
but was adapted to work (less effectively) with the 5V
supply available on the base station circuit board.

Another addition to the base station circuit board
was a ground plane, oriented perpendicular to the antenna.
This was done to improve the range of RF signal
transmission.

Firmware
The firmware used to run the final prototype's base

station was essentially the same as the firmware used to
run the base station of Prototype1. The only major
changes made in firmware were: a)Implementation of the
chord map in code memory as a series of ugly if/then
statements (since processor data memory was limited), and
b)Creation of functions to send PC-AT clock and data
signals. The firmware's key functions were:

• timer0_isr (void) -- A timer driven interrupt service
routine used to count 1 millisecond. (For delays within the
main program).

• timer2_isr (void) -- A timer driven interrupt service
routine used to count .0002 sec--half a PC-AT keyboard
clock cycle (bdclk=25KHz).

• chord_is_changing () -- A routine which returns TRUE if the
chord is changing.

• settled () -- A routine that returns one when the current
chord remains constant for a set ammount of time.

• auto_repeat () -- A routine that allows "typmatic" action:
the repeated typing of characters by keeping one chord
pressed.

• translate (byte chord) -- Maps chords to characters.
• send_bit () -- Sends a bit to the keyboard port.
• send_byte (byte bytetosend) -- Sends a byte, encapsulated

within an 11 bit frame, to the keyboard port.
• send_make () -- Sends the desired character's "make" code:

the byte (or bytes) that correspond to the desired
character within the PC-AT keyboard protocol.

• send_break () -- Sends the desired character's "break"
code: the byte (or bytes) that correspond to the desired
character within the PC-AT keyboard protocol.

Section M

71

For a complete code listing, see Appendix 12. For
diagrams of the PC-AT protocol and the PC keyboard's
make/break codes, see Appendix 13.

Initially there was some doubt concerning the
feasability of directly implementing a PC-AT port, and
indirect methods were considered. One alternative was
to buy a "wedge": an RS-232 to PC-AT converter of the
sort commonly used for bar-code scanner interfaces. The
cost of such a device, however, was prohibitively
expensive. Another alternative was to interface the
row/column matrix of an existing PC Keyboard. By
emulating the signals this matrix would receive from
keys, it would be possible to "trick" the keyboard's
processor into generating the desired PC-AT signals.
This was perhaps the easiest of the alternatives
considered, but would have restricted the device's
extendibility and seemed like a "cop-out" solution.

Two sources greatly facilitated the development of
a direct PC-AT interface. These were an article by
Craig Peacock called "Interfacing The PC" and an
assembly code sample written by Jim Greene(39 & 40).
These sources helped filter out key pieces of
information needed to successfully implement the
interface such as make/break codes, and how to deal with
communications sent from the PC to the keyboard.

Section M

72

Integration

Once the human side and the device sides had been
finished, they were joined together. The results are
shown below. To the left is the hand unit resting on the
base station. To the right is a close up of the hand
unit's charging jack.

Finished Hand Unit & Base Station

Problems Encountered During the Development of the
Final Prototype

Numerous problems were faced--and many overcome--on the
path to a functional final prototype.

Human Side Problems
The human side problems were both physical as well

as cognitive. The high-viscosity glue used to create
bosses for bolts did not adhere to the thermoformed shell
very well. As a result, bosses detached--typically just
when the device was being closed and the last bolt was
being tightened. This problem was solved through the use
of two glue layers--one of thick viscosity to build up the
shape of the bosses, the other of great adhesive strength
to hold the first glue to the plastic shell.

Section M

73

Another source of difficulty was the problem of
finding finger switches with the right characteristics
(characteristics described in the "Prototype 1" section).
This difficulty came as a complete surprise due to the
number and variety of switches available, and the problem
has yet to be solved satisfactorily.

The main cognitive problem encountered in the final
prototype's human side development was optimization of the
chord map. Since the device's primary text entry function
and context were not defined, it was difficult to decide
whether to optimize for typing speed, learnability,
control functions such as navigation, comfort, or some
other factor. In the two weeks allotted to chord map
creation, a stab was made at optimizing with respect to
chord "intuitiveness", however it is yet unclear whether
or not this was the best first approach upon which to
iterate.

Device Side Problems
A number of difficulties threatened the final

prototype's development. A great deal of time was spent
designing the hand unit so that it drew no power when no
chord buttons were pressed. Theoretically this should have
been possible (using the hand unit schematic version 1.5
in Appendix 14), but the design did not work in breadboard
tests for reasons that remain unclear. After several days
without progress, it was decided that there were concerns
of higher priority to address. (All three ICs in the hand
unit circuit had low power modes anyway.)

At one point, the project's electronic development
was threatened by difficulties encountered while trying to
implement a signal delay. Initially it was thought that a
555 timer circuit would work, however inspection of this
IC's data sheet revealed that it would not suffice. Next,
a circuit was designed using buffer, low pass filter and
comparator blocks. When this circuit was tested on a
breadboard using run-of-the-mill 711 op-amps for the
buffer and comparator blocks, it did not function as
planned. After investigation, it was discovered that
rail-to-rail op-amps were required due to the tight supply

Section M

74

voltage range (0V-5V). When rail-to-rail op-amps were
used, the delay functioned properly.

Another difficulty encountered during device side
development was the inability to properly actuate
"extended" characters corresponding to make codes composed
of more than one byte. This prevented characters such as
<delete> and navigation signals like <up-arrow> from
working on the new device. For four weeks, it was thought
that the problem's root was an incomplete understanding of
the transmission protocol for "extended" characters. The
difficulty turned out to be a basic mistake in a branch
statement of the firmware's main subroutine. In this
situation, overlooking the obvious caused the loss of
precious time.

Section N

75

Developing A Chord-to-Character Map

After designing the human side and device side of
the interface there remained one additional challenge
of great complexity: the creation of a chord-to-
character mapping scheme.

A number of possible approaches were considered.
One approach--used to create the chording system for
the "Data Egg" (a device described in the "State of
the Art" section)--was have chords mapped to
characters based characters' shapes. In a system
like this, the character "." might be actuated by
pressing one button while an "I" might be actuated by
pressing a line of buttons. Another approach
considered was to create a chord map based on
characters' ASCII numbers. Finger chords in this
system would in effect be the ASCII numbers in base
two. The approach finally decided upon was to create
a hierarchy of chords from most intuitive to "least
intuitive", and match it with a hierarchy of
characters ranked from most frequent to least
frequent.

Section N

76

Developing a Hierarchy of Chord Intuitiveness

A hierarchy of chord intuitiveness was developed
through the aid of a computer program created by
software engineer Michael Fromberger. This program
displayed all 63 possible chord combinations in
random order, and prompted test subjects to "echo"
each chord by pressing the buttons on the hand unit.
Each chord remained on display until it had either
been successfully actuated or else skipped. The
program logged the following data for each chord:

• Time: The time taken, in milliseconds, to press (or skip)
the chord.

• Done: A binary value; 1 if the chord was successfully
pressed, 0 if the chord was skipped.

• Errors: The number of errors made before a chord was
completed or skipped.

A sample of the program display appears below, and
its corresponding code listings appear in Appendix
15.

Section N

77

The trial data files from eleven test volunteers
were sorted by chord, then averaged. The resulting
"average" data file was sorted by the time taken to
complete or skip chords. This was done based on the
assumption that more intuitive chords would be
pressed more quickly than less intuitive chords. The
code used to carry out these steps--together with
resulting chord hierarchy--can be found in Appendix
16. A segment of the chord hierarchy appears below.

Time-Sorted "Average" Data File:
FingerChord Done(0-1) Time(msec) Errors
000100 1.000 1442.182 0.000
000001 1.000 1449.455 0.000
000010 1.000 1608.000 0.000
101000 1.000 1616.000 0.000
001000 1.000 1743.455 0.000
001100 0.909 1868.182 0.545
011000 1.000 1967.455 0.000
000110 1.000 2115.545 0.091
000011 1.000 2116.727 0.182
001010 0.909 2205.909 0.273
010000 1.000 2398.091 0.000

Section N

78

010100 1.000 2403.364 0.091

The decision to sort chords based on the "time"
heuristic was somewhat arbitrary. Chords could have
been sorted by either of the other two intuitiveness
heuristics: "done" or "errors". Chords also could
have been sorted based on a function of all three
heuristics.

The three heuristics provide roughly the same
information; this is evident from an inspection of
the graphs on the following page. On these graphs,
the x-axis corresponds to time-based chord hierarchy
values ranging from 1 ("most intuitive") to 63
("least intuitive"). The y-axes of the three graphs
correspond to the three intuitiveness heuristics that
were recorded. The fact that the rise in time taken
to complete or skip chords is matched by a general
decline in chord completion and a rise in the number
of errors made before completing or skipping a chord
suggest that the time-based hierarchy is an accurate
measure of chord intuitiveness. The data for the
"errors" and "done" heuristics support the time-based

010001

Section N

79

hierarchy for most chords. (The code used to generate
the graphs appears in Appendix 16).

Alternative Heuristics
for Determining a Hierarchy of
"Most Intuitive" Finger Chords

RESPONSE TIME:

SUCCESSFUL CHORD COMPLETION:

NUMBER OF ERRORS:

Section N

80

Developing a Hierarchy of Character Frequency

In order to develop a hierarchy of character
frequencies, the work of various linguists was
consulted. Several were able to share hierarchies of
English letters such as the following:

MorseCode: E T A I N O S H R D L U C M F W Y G P B V K Q J X Z
Journals: E T A O N I S R H L D C M U F P G W Y B V K J X Q Z
Religious Texts: E T I A O N S R H L D C U M F P Y W G B V K X J Q Z
Science Texts: E T A I O N S R H L C D U M F P G Y B W V K X Q J Z
General Fiction: E T A O H N I S R D L U W M C G F Y P B K V J X Z Q
Mix of the Above: E T A O I N S R H L D C U M F P G W Y B V K X J Q Z

supplied by Steven Schaufele, a linguistics professor
at the University of Soochow in Taiwan(41).

These hierarchies raise an important question:
What dialects of English would potential users use?

Although the hierarchies shown above provide
useful data concerning letters they do not include
numbers, punctuation, carriage returns, spaces, and
numerous other symbols that are often used while
typing.

Since character frequency depends on the specific
language (or dialect) typed and none of the character
frequencies found through research included non-
alphabetic characters, the decision was made to
develop a new character hierarchy, based on
representative sample texts submitted by potential
users. A chart illustrating the process used to
create this hierarchy appears on the following page.

Sample texts were lumped together in one
gargantuan text file, and fed to a freeware frequency
tabulating program called "Chrfreq2.3" developed by J
R Ferguson(35). The output of this program was a
complete frequency-based hierarchy of the ASCII
character set. This hierarchy was then divided into
three bins: "Universal" characters (characters that

Section N

81

Developing a Frequency-Based
Character Heirarchy

Representative
Text Samples

from
Potential Users

"CharFreq23"
Frequency
Tabulator

Complete
Frequency

Distribution
e 95599
t 75738
o 65113
a 61728

 . .
 . .

"Universal"
Character

Distribution

<ret>

<space>
<tab>
<left>

.

Letter &
Punctuation
Distribution
e 95599
t 75738
o 65113
a 61728
n 54036

 . .

Numbers &
Symbols

Distribution
- 15551
I 10779
/ 8931
> 4986
O 3244

 . .

Command
Stroke

Distribution
<ctrl-c>
<ctrl-x>
<ctrl-v>
<esc>

<ctrl-s>
.

1. 2. 3. 4.

Section N

82

would be necessary in most text entry situations)
"Letters & Punctuation" (the frequencies of lower-
case letters were used because lower case is more
common), and "Numbers & Symbols". A fourth bin was
created to hold commonly used text entry commands
such as copy, cut & paste. The hierarchy in this
fourth bin was arbitrary, since command strokes did
not appear in the plain text samples.

Characters were assigned to finger chords in the
following manner: First, the most intuitive chords
across each of the device's four "cases"
(Lower,Upper, Math&Symbol and Control) were matched
to the "Universal" character distribution. Next, the
most intuitive chords yet unassigned in the Lower and
Upper cases were mapped to the "Letters and
Punctuation" distribution. After doing this, the
most intuitive chords yet unassigned in the
Math&Symbol case were matched to the Numbers&Symbols
distribution. Finally, control commands were mapped
to unassigned chords in the Control case based on
their character makeup--for example "cut", <control-
x> was mapped to the same chord as "x" in the Lower
case (which was the same chord as "X' in the Upper
case). The resulting chord map appears in table
format on the following page.

This chord map is somewhat dense to read, and the
6-bit binary numbers it uses to represent finger
chords are cryptic. To make the chord map more easily
learnable for potential users, a more visual chord
map was created for each of the four cases. These
maps show characters inside hand images with symbols
for pressed and released buttons. The visual chord
maps were generated through automation; a Perl script
written by Michael Fromberger was used to create
post-script image files--one for every character in
the chord map. Automated image generation produced
clear, crisp images that could be changed quickly and
easily during chord map refinement. The visual chord
maps appear on the pages following the table chord
map, and related code listings appear in Appendix 16.

Section N

83

The Final Chord Map In Condensed Table Format

Hand Byte Chord MATH &
Position 1=pressed,0=released LOWER UPPER SYMBOL CONTROL & OTHER

1 010100 a A @ <ALT>
2 010111 b B < <CTL-ALT-DEL>
3 100110 c C _ <CTRL-C>
4 011100 d D 3
5 000011 e E > <ESC>
6 100000 f F 1
7 110001 g G 7
8 010010 h H 5
9 010101 I I |

10 100101 j J {
11 001001 k K [
12 000101 l L 4
13 100011 m M 8
14 100100 n N / <CTRL-N>
15 010000 o O O <CTRL-O>
16 010011 p P + <CTRL-P>
17 100111 q Q ^ <CTRL-Q>
18 110000 r R 2
19 010001 s S $ <CTRL-S>
20 001010 t T =
21 100010 u U 9
22 010110 v V] <CTRL-V>
23 000111 w W * <CTRL-W>
24 001111 x X % <CTRL-X>
25 101010 y Y 6
26 011011 z Z #
27 001101 - - -
28 011010 . . ~
29 101001 , , `
30 100001 ? ?
31 001011 ! ! \
32 110100 : :
33 011101 ; ;
34 101011 " " }
35 011001 ' ' & <"and">
36 101100 (((
37 111100)))
38 101000 <TAB> <TAB> <TAB> <SHFT-TAB>
39 000001 <RETURN> <RETURN> <RETURN> <RETURN>
40 000010 <SPACE> <SPACE> <SPACE> <SPACE>
41 000100 <DELETE> <DELETE> <DELETE> <DELETE>
42
43 001000 <LEFT> <LEFT> <LEFT> <SHFT-LEFT>
44 001100 <RIGHT> <RIGHT> <RIGHT> <SHFT-RIGHT>
45 011000 <UP> <UP> <UP> <SHFT-UP>
46 000110 <DOWN> <DOWN> <DOWN> <SHFT-DOWN>

Section N

84

Section N

85

Section N

86

Section N

87

Section O

88

Formal Evaluation of the Final Prototype

The final prototype was evaluated formally
according to the criteria presented in the
"Evaluation Methodology" section of this paper. The
results appear in table form on the following three
pages. Below are comments on some of the tests and
their results.

Weight and size were easy to judge through use of
a ruler, balance and graduated cylinder. Volume was
measured through water displacement. The results
were: Weight=220g, MaximalDimension=15cm &
Volume=(8.43cm)3.

Some durability tests were conducted, others were
not. The hand unit operated after 5 minutes in a
.5°c tub of ice water and 5 minutes in a 45°c bath
(protected in both cases by a plastic bag). It
failed the 1m "drop" test miserably; glue joints
broke in two places and a soldered lead came loose,
short-circuiting and destroying a chip. This failure
alerted the developer to the reality that the device
was a prototype--not a product. It was resolved that
no more potentially catastrophic tests would be run
before the thesis presentation. Needless to say, the
"shower" test was not conducted.

Typing Duration was tested by "hard wiring" the
finger chord corresponding to <enter> then opening up
a dialog box in the Microsoft "Notepad" application
which provided visual feedback confirming that
<enter> was being pressed repeatedly. After 6 hours,
the dialog box continued to provide affirmative
feedback.

Though there was not time to obtain a complete
cost estimate for a product based on the final
prototype, several estimates were obtained: 1$/pc
board (research engineer Doug Fraser), $25,000 for
the shape mold (machine shop supervisor Kevin
Barron), 10¢/unit for plastic (CAD/CAM supervisor
Pete Fontaine) and 15¢/unit for nuts & bolts (Kevin
Barron).

Section O

89

Formal Evaluation

SPECIFICATION

PORTABILITY
• Weight
• Size

• Durability

• Range

• Typing Time

HEALTH & SAFETY
• Ergonomic

Correctness

• Physical
Safety

EVALUATION TESTS

 < 150g (weighed) + 1
 <16cm max. dimension (measured) +.3
 <(14cm)3 (measured) +.3
 Fits in handbag & large coat +.4

 pocket
q Survives 1 minute of operation +.3
 in a shower
q Survives a 1m drop onto a hard +.4
 concrete floor
 Survives operation at 00C and +.3

 at 370C
 Operates @ 2m distance from + 1

 base station
 Sends text for six hours + 1

 continuously on one battery charge

 4.3 out of 5(max)

q Hand maintains a comfortable +.5
 resting position w/o pain
 Neutral wrist position +.5
 Doesn't demand static posture +.5
 Doesn't demand excessive +.5

 digit motion or force +.5
 Does not restrict body motion +.5
 No sharp edges +.4
 Toxification not a risk +.3
 Meets FCC specs for radiation +.3

 safety

4.5 out of 5(max)

Section O

90

Formal Evaluation (Continued)

SPECIFICATION

ACCEPTABILITY

EFFECTIVENESS
• Learnability

• Speed

MULTITASK-
ABILITY

FEASABILITY

EVALUATION

qWins head to head against +5
other designs in the same
survey group of potential
users as "most acceptable".

0 out of 5(max)
(Test not yet conducted)

qPossible to learn typing system +3
 at a basic level in < 5 hours.
q15 wpm average speed possible +1
 after 10 hrs practice.
q30 wpm average speed possible +1
 after 20 hrs practice.

0 out of 5(max)
(Test not yet conducted)

While typing,
Can multitask vocally +1.5
Can multitask with one hand +1
qCan multitask with other hand +1
Can multitask with body +1.5

4 out of 5(max)

Two prototypes developed +5
within real world constraints

5 out of 5(max)

Section O

91

Formal Evaluation (Continued)

SPECIFICATION

COST

EVALUATION TEST

 Development Cost < $600US +2
q Estimated cost of a product +3
based on final prototype doesn't
exceed $100US, given a hypothetical
production run of 100,000 units.
(Cost estimates given by a panel of
experts).

 2 out of 5(max)
 (Second test not yet conducted)

Section O

92

Informal Evaluation of the Final
Prototype

In addition to the completed tests of the formal
evaluation, a learnability & speed test was initiated
and a final survey conducted.

Learnability & Speed Testing

The set of all characters was too large to test
effectively given the time constraints, so it was
decided to test a reduced character set: the set of
numbers and math operators. This set was chosen
because it was a small set that--once learned--could
serve a purpose: operation of a software calculator.
New techniques are easier to learn with a purpose in
mind, and the ability to operate a software
calculator provided a minor degree of motivation (as
did the Oreo® cookies provided.)

To test the reduced character set's learnability,
test subjects ran a computer program. This program
prompted for 30 random numbers and math operators,
and timed how long it took test subjects to correctly
enter these numbers and math operators via the hand-
held unit. Test subjects took the test multiple
times, and their times were logged in a file. Sample
output from the program is shown below, results
appear in graph format on the following page, and
relevant code listings are included in Appendix 17.

The "Calculator" Test
Press <return> to begin:
1. <<96>>96
2. <<+>>+
3. <<24>>2
Please type <<24>>.
3. <<24>>24
.
.
29. <</>>/
30. <<90>>90
Thanks for taking the time to do this trial!
Your time this time round was: 70.351 seconds.
Your trial times (in seconds) are: [1200.351 900.342]

Section O

93

"Calculator" Time Trial Test Results

Unfortunately in most cases test subjects took
the test too few times for accurate learning curves
to be fitted to the data. For the most part, there
was dramatic improvement between the first and second
trial, showing that learning was taking place. One
test subject took the test numerous times, and a
curve was fitted to this subject's trial data, using
a function of the form:

Ae-Bt + C

A, B and C were chosen through trial and error,
and the curve fit assessed visually for lack of
knowledge of better curve fitting techniques.

Test Subject 1 Test Subject 2 Test Subject 3

Test Subject 4 Test Subject 5 Test Subject 6

Test Subject 7 Test Subject 8

Section O

94

The curve fitted to Test Subject 8's trial data
was then used to extrapolate an estimation for typing
speed after 10 hours of practice. This estimation
relied on the following assumptions.

• Each "Calculator" test trial takes 10 minutes,
 so 60 trials are possible in 10 hours.
• 90 characters are typed in each trial.
• On average, there are 5 characters in a word(42).

Based on these assumptions and the fitted curve data,
the following calculation was made:

 characters/finaltrial * 60sec/min
Predicted WPM == ------------------------------------
After 10 hours seconds/finaltrial * 5chars/word

 90*60

 == ----------- == 17.9066 18 WPM
 60.3197*5

18 words per minute after 10 hours is three WPM
faster than the goal set in the "Specifications"
section of 15 words per minute after 10 hours.

Due to the fewness of data points, the dubious
curve fitting procedure and the numerous assumptions
made, great faith should not be place in the 18 WPM
figure, however it does serve as an order of
magnitude estimate.

Section O

95

The Final Prototype Survey

After completing the "Calculator" time trial
test, volunteers were asked to complete one final
survey regarding the interface. Survey and compiled
results are in Appendix 18, and the results are
summarized below:

Number of responses: (8)

Occupation: Engineering Student: (4)
Computer Science Major: (1)
Geology Student: (1)
Woodshop Instructor: (2)

Interface "Pros":
Comfortable, mobile, allows free range of body motion,
requires only one hand, is of good size & weight.

Interface Cons:
Some chords awkward or impossible, difficult to learn all
chords, wires exposed, inadequate button size and tactile
feedback, grip needs padding, and it is difficult to type
fast.

Could Envision Typing With the Device: Yes(100%)

Envisioned Uses for the Device:
Multi-purpose controller, mobile PDA or computer
keyboard, extensor robotics controller, web navigation,
tool for handicapped access.

Want the chord map to be programmable: Yes(100%)

Overall Acceptability Rating [1=LO 5=HI] taking into account
aesthetic, sociological, ergonomic and cognititve factors:
Average: 4.1

The survey indicated that there were problems
that needed to be addressed regarding the actuators,
grip padding and the chord map. People generally
found the device acceptable, felt that it could be of
use in typing and controlling contexts, and liked the
free range of motion and mobility it made possible.

Section P

96

Future Work

The interface can be improved in numerous ways,
and still needs to be properly tested on numerous
fronts. Appropriate goals for future work include
the following actions.

Human Side:

• Add Tactile symbols to the case selector thumb
wheel.

• Improve the finger buttons. Better tactile
feedback and larger touch surfaces are required.

• Add padding to grip area.
• Reduce external wiring, possibly through "signal

superposition" switches. (Have all switches on one
circuit line, and have each contribute a
distinctive signal when pressed. Each switches
contribution to the signal can then be decoded by
the circuit inside the hand-unit's body--this idea
was proposed by research engineer Doug Fraser.)

• Refine the chord map and or develop different maps.
Based on informal testing, the device seems to be
well suited to tasks which would require a limited
(and thus more learnable) chord set--tasks such as
web navigation or control of household devices.
Given this observation, it might make sense to
optimize for controlling or navigation functions in
future chord-mapping efforts.

Device Side:

• Encrypt wireless data transmission.
• Add programmability to chord map so that the user

can easily re-map all (or some) of the chords to
characters, commands and strings. Adding this
feature early on might provide insight into the

Section P

97

device's most suitable functions and methods for
chord map optimization.

• Simplify base station hardware -- use
microprocessor software to do the work of the
decoder and inverters that are currently necessary
to the base station circuit.

• Reduce latency inherent in the wireless link. This
could be accomplished simply by speeding up the
relatively slow wireless data transfer rate.

• Improve battery charging circuitry.
• Reduce standby power requirements of the hand unit

circuitry.

Testing:

• Learnability, Usability and Acceptability testing
are most important!!! If people can't learn to use
the interface or don't want to do so, its not a
useful tool. The reactions that children and
elderly folks have toward the interface have yet to
be witnessed.

• Comfort, Water Resistance, Shock Resistance.

Section Q

98

Resources & Acknowledgment

This project was made possible through the
assistance and expertise of a number of people,
institutions, and written works. I've tried to
remember and include as many of these contributors as
possible below.

People and Institutions

• David Stratton
• Clayton Okino
• Doug Fraser
• Michael Fromberger
• Lisa Tiraboschi
• Ted Cooley
• Stu Trembley
• Francis Kennedy
• Charlie Sullivan
• Pete Fontaine
• Leonard Parker
• John Collier
• Kevin Baron
• Michael Ibey
• Rene & Roger Dauphinais
• The many people who took the time to answer surveys

and offer suggestions.
• Cherry Corp. Electronics
• Glolab.com RF Electronics

Material/Environmental Resources

• Thayer School Machine Shop
• Thayer School Digital & Analog Labs
• Dartmouth College
• Mom and Dad

Section Q

99

Works Cited & Consulted

1. Gleick, James. Faster. Pantheon Books, NY, 1999.

2. Beeching, Wilfred A. Century of the TypeWriter.
St. Martin's Press, NY, 1974.

3. Herkimer County Historical Society. The History of
the TypeWriter. Herkimer, NY, 1923.

4. Kittler, Friedrich A. Gramophone, Film,
TypeWriter. Stanford University Press, Stanford,
1986.

5. http://www.cs.ucl.ac.uk/staff/b.rosenberg/kbd/

6. Kelley, Whitmore. Interview concerning mind-
controlled computer interface systems. Dartmouth
College, 2000.

7. Hailes, Katherine N. How We Became PostHuman.
University of Cicago Press, Chicago, 1999.

8. Goldberg, Beverly. Overcoming High Tech Anxiety.
Jossey-Bass, San Francisco, 1999.

9. Denning, Peter ed. Talking Back to the Machine.
Copernicus, NY, 1999.

10. Cooper, Alan. The Inmates are Running the
Assylum. Alan Cooper, 1999.

11. Orr, Linda V. Computer Anxiety. University of
Southern Maine,
http://www.usm.maine.edu/~wm/lindap~1.html.

12. Ruegg, David. Repetitive Stress Injury: A
Handbook of Preservation & Recovery. Largo,
http://home.clara.net./ruegg/info.htm.

Section Q

100

13. Snead, Elizabeth. "Virtual Certainty: Films
Reflect Computer Fears". USA Today. April 21 1999,
1D.

14. Harmon, Amy. "Talk, Type, Read EMail". New York
Times. July 23 1998, Late Edition, G1.

15. Price Waterhouse Coopers, Technology Forecast,
PWC, Menlo Park CA, 1998.

16. Electronic Industries Alliance. Electronic Market
Data Book. EIA, Arlington, 1999.

17. OSHA, "Secretaries Day Memorandum".
http://www.osha.gov/media/secretary97/memo.html.

18. Smith, MJ, et al. "Occupational Stress in Human
Computer Interaction" Ind Health, April 1999, 157-
173.

19. Turner, Rob. "Making IT Personal" Money. May,
1998, 155-157.

20. Ferguson, Owen. "A Look into the Future".
Computer Dealer News. December 10 1999, 1-53.

21. Chadderdon, Lisa. "Eighty-Sixing the Nine-to
Five". Architecture. December 1999, 92-95.

22. Emmerson, Bob. "The Magic of Mobile".
Communications International. November 1999, 64.

23. Hudson, Marion E. "Hoteling: Offices a la Carte".
Office Systems. September 1999, 28-34.

24. O'Brien, Jennifer. "IBM/Psion Development
Alliance Strives to Pump Up PDA Features". Computer
Dealer News, August 27 1999, 9.

Section Q

101

25. Thomas, Richard. "The World is Your Office".
Management Today. July 1999, 78-84.

26. Charles, Kirk. "Jack or Jill of All Trades".
Black Enterprise. July 1998, 154.

27. Graps, Amara. "Ergonomic Computing (or Dont Let
Your Computer Cripple You!)".
http://www.amara.com/aboutme/rsi.html.

28. Dignan, Larry V. "iMac Smashes ComUSA's Sales
Records".
http://www.zdnet.com/zdnn/stories/news/0,4586,2164081
,00.htm

29. Liberty Mutual. "Office Ergonomics" pamphlet
series. Krames Communications, 1996.

30. Sharpe, Rochelle. "Work Week." The Wallstreet
Journal. April 9th, 1996.

31. Rodgers, Suzanne ed. Ergonomic Design for People
at Work. Eastman Kodak Company Ergonomics Group
Health and Environmental Laboratory. Van Nostrand
Reinhold, NY, 1986.

32. Chording Keyboards, Typing Injury FAQ.
http://www.tifaq.org/keyboards/chording-
keyboards.html#Infogrip

33. NIOSH, Carpel Tunnel Syndrome.
http://www.cdc.gov/niosh/ctsfs.html

34. Interview with Denise Finch, Ocupational
Therapist. Dartmouth College, March 8, 2000.

35. J R Ferguson, CHRFREQ (Share-Ware MS DOS
Character frequency tabulating application),
http://hello.to/ferguson.

Section Q

102

36. Adam D. Tinniswood, et al., "Computations of SAR
Distributions for Two Anatomically Based Models of
the Human Head Using CAD Files of Commercial
Telephones and the Parallelized FDTD Code", IEEE
Transactions On Antennas and Propagation, Vol. 46,
No. 6, June 1998, p829.

37. Ralph Tenny. "Nicad Battery Charger".
http://www.dprg.org/nicad_charger.html June 4, 2000

38. Thomas J. Armstrong. (Case study on hand size for
the class: Occupational Ergonomics Fall 99),
http://www.engin.umich.edu/class/ioe433/Biomechanics/
Handsurvey.html June 4, 2000

39. Craig Peacock. "Interfacing the PC Keyboard",
http://www.beyondlogic.org/ Jan 21, 2000.

40. Jim Green. "Keyboard Scanner Using the 83C751".
(An assembly code sample) March 27, 2000.

41. Steven Schaufele. (Answer to a web bulletin
posting concerning character frequencies), English
Department, Soochow University, Waishuanghsi Campus,
Taipei 11102, Taiwan, ROC, fcosw5@mbm1.scu.edu.tw

42. Noah Hearle.
<http://ds.dial.pipex.com/town/park/yfn77/Academic/Ma
ths/Sentence.html>

Section R

103

Revised Time Line

Interface Project Time-Line Krispin Leydon

Task Term 1 Term 2
Week 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Background Research/Reading

Building Rough & Ugly Wired Prototype

Project Planning/Evaluation (hour a week)

The Physical Human/Device Interface
 Play with clay
 Create 12 polyurethane models
 Choose how to implement swich actuators
 Therma-form shell copies of two best shapes
 Create initial prototype
 Create second prototype

Device Electronics & Software
 Digital design
 Write controlling software
 PS/2 Port

Formal Testing
 Benchmark Surveytesting
 Initial Shape Testing
 Shape + Switch Testing
 Initial prototype testing
 Final prototype testing

Documentation
 Project Proposal
 Progress Report (oral)
 Progress Report (written)
 Final Report(oral)
 Final Report(written)

Appendix 1

104

Keyboard History & "Herstory"

The dominant interface device used by humans to
control machines over the past two centuries has been
the typewriter keyboard . This interface "completely
revolutionized the modern business world" implemented
as the typewriter, then did so again as the interface
of choice for the personal computer(2, 33). The fact
that this interface has both initiated revolutions as
well as survived two centuries of the most rapid
technological growth humanity has ever experienced
testifies to the interface's effectiveness as a basic
solution to the problem of moving text information
from man to machine.

The QWERTY interface was developed by Christopher
Latham Sholes working for the Remington company. The
invention of the typewriter was the work of many
hands over an extended period of time; Sholes was
the52nd person to "invent" the typewriter(2, 28).

The development of the typewriter--like so many
works developed using the typewriter --is a story
steeped in irony. Despite the machine's revolutionary
nature, it "attracted very little attention
when...first exhibited"--generally less than the
(female) typist operating it(2, 33). (The term
"typewriter" originally applied to both typist and
the device, and led "to predictable Music Hall gags
about men working with typewriters on their
knees")(2, 34). Ironically, the women typists who
made chauvenistic humor possible were spearheading
the women's professional movement in the United
States.

Perhaps the greatest irony associated with the
development of the typewriter is the fact that it
emerged as a success. The interface was designed for
machines first, and humans second. The "reason for
the QWERTY layout was to space frequent digrams [two
letter combinations] further away from each other,
reducing the number of [mechanical] jams"(5). The
QWERTY layout was not designed to slow people down,

Appendix 1

105

contrary to poular belief, however its design did not
optimize typing speed or usability either.

The QWERTY--or "Universal"--keyboard became a
natural interface choice for mainframes and personal
computers. It allowed people to interface a complex,
new and potentially intimidating machine through a
layer of simplifying abstraction that was known and
familiar. In this way, the Universal keyboard
interface has served as a bridge, allowing ordinary
people to cross between old and new worlds with a
minimum of hardship.

Appendix 2

106

Psychological Considerations in Computer
Interface Design

Our writing tools are also working on our
thoughts.
 --Nietzsche, 1881

Nietzsche, one of the first people to rely on a
writing machine, was also an early contributor to the
dialogue concerning the subtle influence machines
exert over their creators(4, 200). His concern was
echoed by Konrad Zuse half a century later, when Zuse
implemented the first calculating machine capable of
conditonal jumps.

I was, [Zuse said,] nervous about taking that
step [implementing IF THEN command sequences]. As
long as that wire had not been laid, computers
can be easily overseen and controlled in their
possibilities and effects. But once
unrestricted... processing becomes a possibility,
it is difficult to recognize the point at which
one could say: up to this point, but no
further(4, 258).

The anxiety expressed by Nietzsche and Zuse is one
of the most consistent themes in science fiction. It
is present in classic works such as Arthur C. Clark's
2001 A Space Oddesy and Issac Assimov's Robots
series, as well as in contemporary works such as The
Matrix and Virtuosity. Notes film historian Leonard
Maltin, "We are uncomfortable with what computers
represent: the loss of control of our lives. We want
computers to help us, not rule us. They are supposed
to be a tool, a slave, not our masters"(13). Josef
Rusnak, director of the sci-fi thriller The 13th
Floor remarks that though "the computer...has become
part of our daily existence...its control is
terrifying"(13).

Appendix 2

107

Fears concerning computer control influence consumer
choices; people tend not to buy things they perceive
to be a threatening or untrustworthy. Consider the
fact that the only new computer input device to gain
near complete market penetration over the course of
the last thirty years is a small, non-threatening
object associated with an endearing, harmless rodent
(the "mouse"). In addition, the best selling personal
computer in recent history is a machine designed
expressly NOT to look like a computer (Apple's
"iMac")(28). According to Pattie Maes, associate
professor at the MIT Media Lab, "People will adopt
[new digital] devices only if they can really trust
[them]...humans always have to feel in control--you
don't want [a] computer running your life"(9).

The fear of being replaced or controlled by
computers is not just material for historical
footnotes, fiction, and market predictions; it is
pervasive force affecting people's physical and
psychological well-being. According to Linda Orr of
the University of Southern Maine, "Feelings of
anxiety toward computers and computer use is common,
affecting 30 to 40 per cent of the [U.S.]
population"(11, 2). According to a study done by the
department of industrial engineering of the
University of Wisconsin, "the effects of the stress
of human computer interaction in the workplace
are...somatic complaints...anxiety, fear and
anger"(18). Alan Cooper, author of the treatise on
interface design The Inmates are Running the Assylum,
notes that widespread use of computers in the
workplace has led to a Tourette's-like response:
"[You] can walk down the halls of most office
buildings and hear otherwise normal people sitting in
front of their monitors, jaws clenched, swearing
repeatedly in a rictus of fury"(10). The trend
borders on humerous now, but its extension into the
future may not be so funny. Konrad Zuse's question
returns to haunt: When do you draw the line?

Computer anxiety is of crucial importance in the
design of hand operated textual input devices, for

Appendix 2

108

the hand--together with language--are two defining
characteristics of human beings. Martin Heidegger in
his essay On the Hand and TypeWriter goes so far as
to say that "the hand is, together with the word, the
essential distinction of man"(4, 198). The junction
between hand and textual input device is a vulnerable
junction, a space where issues of identity,
dependency and control converge. Good, human centered
interface design demands that this junction be a
protected space, a space that is non-threatening,
non-invasive, and encouraging of human expression.

Appendix 3

109

Ergonomic Considerations
for Keyboard Design

Ergonomics is an interdisciplinary field
involving bio-mechanical, physiological,
psychological and behavioral considerations. The
field's complexity together with human individuality
makes pronouncing a design "ergonomically correct" or
"ergonomically incorrect" a somewhat pseudoscientific
processes. Nevertheless, there exist rules of thumb
which can be used as approximate guidelines for
"good" ergonomics.

The guidelines presented below are based on the
recommendations of Liberty Mutual Group (America's
largest workers' compensation ensurer), The National
Institute for Occupational Safety and Health (NIOSH),
Lisa Tiraboschi (the associate director for
Environmental Health and Safety at Dartmouth
College), the Eastman Kodak Company Ergonomics Group
Health and Environmental Laboratory, occupational
therapist Denise Finch, and numerous individuals
coping with keyboard related RSIs(29 33 & 31). The
primary ergonomic considerations for keyboard design
are:

• Neutral wrist alignment (See the following page for
a visual definition of neutral alignment).

• Use does not require static posture. Static posture
inhibits the circulation of blood.

• Use does not constrain the upper body's range of
motion. The "best" posture is person-specific. The
more a typing device constrains a person's range of
motion, the less chance there is of a healthy
posture being achieved.

• Key actuation does not require excessive or awkward
motions and forces.

• Typing does not cause pain.

Appendix 3

110

Neutral Wrist Alignment

Diagrams reproduced from
 "Ergonomics for People at Work"(31, 470)

Distal
Wrist Crease

Top of 3rd
Finger

Appendix 4

111

Initial Brainstorm

Shown over the next few pages are concept
sketches illustrating some of the potential solutions
that emerged from initial brainstorming.

"The Adaptive Lump"

The "Adaptive Lump" has an electronic core
covered with pressure sensors. Users mold their own
plastic shape around this core, and develop their own
finger movement control language. The core uses
information from all the pressure sensors to create a
3D-pressure vector that gets mapped to characters by
a remote base station.

Appendix 4

112

The "E.M. Field Watch"

The "E.M. Field Watch" is a device (B) worn on
the wrist that keeps track of the position of fingers
by changes in the field-lines of an electromagnetic
field generated around the hand. Hand movements are
then mapped to characters. The device might be
accompanied by finger rings or units placed on the
hand's finger nails (A) to exaggerate the way hand
movement distorts the surrounding electromagnetic
field.

Appendix 4

113

The "FingerPump"

The "Finger Pump" is held by the thumb and the
two smallest fingers. Two slider buttons (A)
operated by the two larger fingers provide a variety
of possible combinations. These combinations--
together with push-buttons (B)--create unique
combinations corresponding to characters.

Appendix 4

114

The "Data Flute"

The "Data Flute" is a two handed device with an
interface like that of a penny whistle. (Think of how
fast the penny whistle can be played!) It is roughly
the same size and shape as an expensive pen, and
could be stored in a pocket easily.

Appendix 4

115

The "Fruit"

The "Fruit" is designed to fit the hand's resting
position, and thus does not require much effort to
hold onto. A flange encircling the devices' top
helps support the weight of the device (B & C). Each
digit is responsible for one or two buttons (A).

Appendix 4

116

The "Mickey Glove"

The "Mickey Glove" is a glove similar to the
Nintendo Power Glove, but designed to translate
finger and thumb positions into characters.

Appendix 4

117

The "Heart"

The concept of the "Heart" is that each digit
rests inside a socket similar to a Chinese finger
trap. Each digit has push/pull control--this would
make possible a greater number of finger position
combinations than would be possible with, say, one
push-button per digit. Releasing the device might
prove difficult.

Appendix 4

118

The "Pancake"

The "Pancake" is a device that uses both
mechanical rotation and button actuation to select
characters, which appear along the device's
perimeter. The character to be selected could appear
under a visible crosshairs mark--this would improve
the device's learnability and usability. In
principle, operation of this device would be like the
operation of a tubular slide rule.

Appendix 4

119

The "Salt Shaker"

The "Salt Shaker" houses an accelerometer. By
shaking it in a serial pattern such as Morse code, a
user could send characters.

Appendix 4

120

The "Saw"

The "Saw" interface crosses the interfaces of
trombone and accordion. Sliding hands away from each
other (A) would provide one form of control, while
buttons on each handle (B) would provide another form
of control. The combination of these control types
might prove interesting.

Appendix 4

121

The "Strap-O-Type"

The "Strap-O-Type" typing system could involve
some combination of pulling shoulder straps and
operating actuators placed on these straps. This
system could be mounted on suspenders or the straps
of backpacks. The system might be useful for
interfacing large and heavy computers required to be
portable. (Such device could be housed in a
backpack).

Appendix 5

122

Typing Habits Survey
__
Human Interface Design Project Survey Krispin Leydon Jan 23, 2000

Background Information/Benchmarks

Name:________________
What is your profession?

What is your age?

Please trace the outline of your dominant hand on the back of this piece
of paper.

Do you have a dominant hand? If so, which one? [L or R]

How would you describe your learning style? Kinesthetic (learning by
doing), visual (learning by watching), auditory (learning by listening) or
other ___________ ?

How fast can you type? [words per minute]

On average how many hours a day do you spend typing? [(<.5) (.5-1) (1-
2) (2-3) (<3)]

Do you use a computer for longer periods of time now than you did five
years ago?

What sort of device do you use to type?

Do you touch-type, or hunt-and-peck?

Is the keyboard you use to type comfortable? [1 2 3 4 5]

What do you like about it?

What do you dislike about the keyboard you use?

Can you envision scenarios where you might want to send text information,
scenarios which are impossible given a standard keyboard interface? If so,
please describe these scenarios.

How valuable would the ability to type comfortably while "on the move" be
for you?
[1 2 3 4 5]

Does the notion of a light-weight electronic device attatched to your body
or sewn into your clothing bother you? If so, what about these
possibilites bothers you?

Appendix 5

123

HID Project Krispin Leydon
TYPING HABITS SURVEY RESULTS

Name Profession Age Dominant HandLearning StyleHoursTypingDailyTypeMoreThan5yearsAgoTouchType? WPM Typing DeviceComfortable?Pros? Cons? NewTypingScenarios Type&MoveValueDoesAttachmentBotherYou?
Brian Fife ES Student 21 2to3 Y 95pc kbd 4keyResponse laptop kbd limited space or on move no.
Michael Fromberger Software Engineer 2 8 R K,V,A >3 N Y 120mac kbd 4keyResponse, full size, uniform pressure asymetric hand use note-taking while upright and moving, one handed operation 3sewn-yes, strap-no
Lisa Traboschi EHS Asst. Director 4 1 R A 2to3 Y Y mac kbd 5fits hands well stupid keypad none envisioned 3sewn-yes, else maybe
Shanna Davis ES/CS Student 2 1 R K 2to3 Y 65kbd 3gets job done hurts wrists, not comfy none envisioned 5yes-invasive. Too personal
Jeannie Lee Composer, Student 2 3 R K .5to1 Y Y 78kbd 3small size too straight, no wrist support memos, spontaneous ideas 3.8yes-fear of breakage
Charlie Sullivan ES Prof 3 5 R >3 N 75sgi kbd 4light touch keys bottom out abruptly 4yes-want to get away from technology sometimes. Nerdy image.
Ashok R ES Grad Student 2 4 R K 1to2 Y Y 65sgi kbd 3keys go deep, quiet, broad. Not like I-mac hurts wrists spontaneous ideas 5if looks geeky
Jerry Rutter Teacher, Archaeologist 5 3 R V,Reading 1to2 Y N 65mac kbd 2not much too small, hit two keys at once Filling out database format, replying to simple questions, onsite note taking 4no .
GeneCesari Retired Head of School 6 9 R K,V,A .5to1 Y N 25wrdprcessr kbd 3legibility, size nothing comes to mind taking notes, reminders, recording ideas when not near a keyboard 3sewn-no, strap-yes. Awkward, uncomfy, worry about damage
Sumit Borah Student, LabTechnician 2 3 R K 1to2 Y Y mac kbd 4ergonomic, curved, neutral hand position no flexible keymap nothing comes to mind 1no .
Suneth J Student 2 3 R K,V 2to3 Y Y 75chars mac kbd 4soft auditory feedback keys slow to return, can't type w/o wrist rest 3only if interferes with fashion
Lauren Newton Perpetual student 2 3 R V 1to2 N Y kbd 4quiet trackpad in way eating and typing 2ok attatched to clothes, not sewn in.
Michelle Ott student 2 3 R K 1to2 Y Y 80kbd 3I know it probably not good for hands wrists cause not new ergo models ??? 2no .
Mike Brennan student 2 1 R V,K 1to2 Y N 50pc kbd 3soft keys, get response worried about carpel tunnel syndrome for typing equations, derivations 5yes--want time away from technology. Aprehensive. Like cell phones
Rupa Mukherjee Health Care Analyst 2 2 R MostlyK,V,A >3 Y Y 70kbd 3elevated, good position key jam, can't find a "right" position on the desk,need flat stable surface typing and drinking hot chocolate 4.5sewn-yes,if bulky
neena shin student 2 1 R K >3 Y Both 35-40 mac kbd keys press easily no page-up/down no, not yet. 2no .
alison jeffe student 2 0 R V >3 Y Y 65kbd 5good keys nothing wrong no 1no .
Sam Feakins student 20nope V,Reading >3 Y Y fast kbd 3good keys--don't like wierd ergo boards little small-wrists hurt no 5no .
John Cruz Marketing Consultant 2 2 R K,V >3 Y Y 120kbd 5keys don't stick loud no 1Yes -- worried about size and weight
Colin Sandberg Engineer 2 2 R writing 1to2 Y Y 15-25 pc kbd 3good keys wrists bent unnaturally while teleconfrencing 3no .
Sarah Kelmenson Med Student 2 3 R V,K .5to1 N medium laptop mac kbd no 3sewn in yes, attatched to hands, no.
Jason Erk Elementary Teacher 2 3 R K 1to2 Y Y 75kbd 1familiar get tired typing on workout bike, journaling while traveling, recording thoughts while interview 5no .

Appendix 6

124

Shape Survey

Human Interface Design Project Survey Krispin Leydon Jan 23, 2000

Initial Shape Survey Name:________________

1. Individual Shape Critiques

How comfortable is it to hold? [1 2 3 4 5]
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12)

How hard was it to pick up the shape and have it set in a comfortable position? [1 2 3 4 5]?
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12)

How hard was it to put down? [1 2 3 4 5]
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12)

What do you like about this shape; what about it "works"?
1) 2) 3) 4) 5) 6)
7) 8) 9) 10) 11) 12)

What bothers you about this shape; how does it not work?
1) 2) 3) 4) 5) 6)
7) 8) 9) 10) 11) 12)

Can you imagine typing with this shape? [Y N]
1) 2) 3) 4) 5) 6)
7) 8) 9) 10) 11) 12)

2. Overall Shape Critiques

Which is your favorite shape?

Which shape felt most comfortabe?

Which shape can you most easily envision yourself typing with?

What would you call this device?

What weight feels right for the device? [#of quarters]

If you could use two of these devices--one per hand, and tye 17% faster, would you choose the two-handed
system over the one-handed system?

If you had a choice between a cord-tethered device that could be used indefinitely, or a wireless device with a
battery that had to be changed once a month, which would you prefer?

Do you have any other comments/suggestions/ideas?

Appendix 6

125

HID Project Krispin Leydon
INITIAL SHAPE SURVEY RESULTS 8

Individual Shapes:

Shape Comfortability Picking Up Putting Down What do you Like? What "works"? What don't you like? What doesn't "work"? Can you imagine typing with this shape?
1 3.9 2 1.5soothing, simple, fits,comfy impractcal,toosmall,hold&press-,unused area 3N, 5Y
2 4.2 2.5 2.3thumb+,stays put, fingers+, secure thumb-,top annoying, 8Y
3 4 2.1 1.5natural feel,fingers+, thumbmove++ talltop, hold slips, RestrictsIndexF,fingers-,hold,nothing,morespaceneeded F2&T 2N,6Y
4 2 2.9 1.8simple,fingers+,nothing,simple,thumb+, boxy,orient-, unsteady,comfy-,slips,thumb-,wastespace, butt too thick 7N, 1Y
5 3 2.5 1.6simple ,nothing,palm+,comfort,fingers+ bulky,too big, slips, thumb-,hold- 3N, 5Y
6 2.75 2.8 1.75thumb+ , nothing,contour, fingers++, hold-,large,toofree,clumsy 6N, 2Y
7 3 2.8 1.9fingers+,hold+,compact,palm,simple toosmall,nobuttonspace,unstable, thumb&finger edges sharp,thumb-, 4N, 4Y
8 2.8 3 1.9compact,nothing,finger+,comfy toosmall, unstable, thumb-, 2small, hold-, palm-, no guides for fingers 6N, 2Y
9 2.7 3.2 1.7symetric,nothing,wide,finger+,balanced pancake shape, too big, fingers-, hold-, grip-, slips 4N, 3Y

10 3.5 2.4 2symetric,nothing, like videogame control, options+ videogame-like, two handed, toothick, not appropriate, wrist-, confining, shoulders, angles wrong3N, 5Y
11 3 2.9 2.1like video game, nothing, wide, nothing, small videogame-like, flat, hold-, thin, wrists bent, confining, two handed 2N,6Y
12 2.8 2.1 2.25elegant, simple, familiar, symetric,size+, interesting, portableunintuitive, narrow, too weird, rolls, socially unacceptable, how to hold up, 2N,6Y

Overall Shape Critiques:

Name Favorite Shape MostComfortable Device Name? Easiest to Imagine Typing With Tethered or Wireless? Acceptable weight for the device? 2or1 handed?Comments/Suggestions/Ideas?
Brian Fife 112, 3, 12, 11, 7 43 Qs = 258 g
Michael Fromberger2, 12 2, 12 DataWhistle, Keygrip 12 Wireless 20 Qs = 120 g 1
Lisa Tiraboschi 2, 1 2KeyType 2Wireless 14 Qs = 84 g 2
Shanna Davis 3 3ErgHand 3 or 2 Wireless 34 Qs = 204 g 1Colors!
Jeannie Lee 2, 1, 7 1The DigeyBoard 1with strap Wireless, both would be nice. 8 Qs = 48 g 1, mirror image
Charlie Sullivan 2!!! 3handkey 2wire less 16 Qs = 96 g 1
Ashok R 3 3Pa lmer 3 33 Qs = 198 g 1extensions! PDA!
Jeremy Rutter 5, 12 2,3 TeleDactyl (greek Tele(distance) daktylos(finger) 5wire less 25 Qs = 150 g 1

Appendix 7

126

Thermaforming

"Thermaforming" is a process by which plastic shapes
of relatively thin uniform thickness can be molded
quickly, easily and cheaply. During thermaforming, a
sheet of Acrylic-PVC plastic--such as Kydex--is
simultaneously heated from above and subjected to a
vacuum pressure from below. Heat causes the plastic
to become temporarily pliable and this makes it
possible for vacuum pressure to "suck" the plastic
sheet over a three dimensional mold, as is
demonstrated in the picture below:

H
E

A
T

H
E

A
T

H
E

A
T

H
E

A
T

H
E

A
T

HEATER COILS

PLASTIC
SHEET TO
BE MOLDED

MOLD

V
A

C
U

U
M

VACUUM PUMP

V
A

C
U

U
M

V
A

C
U

U
M

The Thermaformer in Action

Appendix 8

127

FIRMWARE -- Prototype 1

The following programs were written/adapted for
driving the 8052 microprocessor and accessing a
serial port via RS-232 communication:

key.c

/*
KEY.C
Krispin Leydon
Jan 2000

FUNCTIONAL DESCRIPTION:
This program is the controlling software for a one handed 7 key "chording"
keyboard.
*/

/*Include Directives*/
#include <reg51.h> /* define 8051 registers */
#include <stdio.h> /* define I/O functions */

/*Defines*/
#define bool bit
#define byte char

/*Static Variable & Constants*/
static const byte TL0_VAL = 0x66; /*TL0 & TH0: -922 base10*/

 /*(to count .001sec)*/
static const byte TH0_VAL = 0xFC;
static const byte TH1_VAL = 0xFD; /*9600 Baud (with 11.0592MHz Xtal)*/

/*Global Variables & Constants*/
data byte prev_chord = 0;
data byte current_chord = 0;
data unsigned byte settle_time = 150;
data unsigned short int time_before_repeat = 500;
data unsigned short int repeat_delay_time = 100;
bdata bit time_up = 0;
idata char chord_map[129];

/*Prototypes*/

Appendix 8

128

bool chord_is_changing (); /*Returns 1 when a new chord begins/ends*/
bool settled (); /*Returns 1 when a chord is maintained for x msec*/
void auto_repeat (); /*Wait to see if "typematic" action is necessary*/
char translate (byte chord); /*Maps chords to chars*/
void send_char (); /*Sends char to wherever*/
void init_chord_map (); /*Creates a chord map*/

/*TIMER0_ISR -- Interrupt service routine*/
/*Fires each millisecond, then sets flag "time_up" to 1*/
/*timer is turned on and flag reset from within other functions.*/
void timer0_isr (void) interrupt 1

{
/*Set flag*/
time_up = 1;

/*Turn timer 0 off*/
TR0 = 0;

/*Reload Timer0 Value*/
TL0 = TL0_VAL;
TH0 = TH0_VAL;

return;
}

/*MAIN*/
void main ()

{
/*Initialize 8051 serial I/O stuff*/
TMOD = 0x21;
TL0 = TL0_VAL;
TH0 = TH0_VAL;
SCON = 0x5a;
TCON = 0xc0;
TH1 = TH1_VAL;
PT0 = 0; /*Set timer 0 interrupt to low priority*/
ET0 = 1; /*Enable timer 0 interrupt*/
EA = 1; /*Global interrupt enable*/

/*Initialize Other 8051 stuff*/
P1 = 0xFF;

/*Map chord combos to characters*/
init_chord_map();

/*Initial Prompt*/
 printf("\nType!\n") ;

/*main (infinite) loop*/

Appendix 8

129

 while(1)
{

 /*Write All 1s to Port1 Input Bits -- if any are 0 when read,
means input happened*/

P1 = 0xFF;

/*Test to see if user has begun to enter a new chord*/
if (chord_is_changing())

{
 /*New Chord Started:*/
 /*Wait until the value of P1 settles.*/

/* (Wait until the value of P1 doesn't
 /* change for a period of x msec).*/

 while(!settled())
 {
 }

/*Send character corresponding to chord to*/
/*wherever. If chord is held for a period*/
/*of y msec, start repeating the chord (typmatic
action--yeah!).*/

 if (current_chord != 0x00)
 {

send_char();
auto_repeat();
}

}
}

}

/*CHORD_IS_CHANGING*/
bool chord_is_changing ()

{
if (current_chord != ((P1 ^ 0xFF) ^ 0x00))

{
prev_chord = current_chord;
current_chord = ((P1 ^ 0xFF) ^ 0x00);
return (1);
}

 else
return (0);

 }

/*SETTLED*/

Appendix 8

130

bool settled ()
{
data unsigned byte i;

for (i = 1; i < settle_time; i++)
{
time_up = 0;
TR0 = 1; /*Start timer 0*/
while (!time_up)

{
if (chord_is_changing ())

{
 /*Chord hasn't settled.*/

/*Turn timer 0 off*/
TR0 = 0;

/*Reload Timer0 Value*/
 TL0 = TL0_VAL;

TH0 = TH0_VAL;

return 0;
}

}
}

/*Chord has settled!*/
return 1;
}

/*REPEAT*/
void auto_repeat ()

{
data unsigned short int i;

/*Wait for chord to be held for a sufficient ammount of time*/
/*Return if chord changes during this wait period*/
for (i = 1; i < time_before_repeat; i++)

{

time_up = 0;
TR0 = 1; /*Start timer 0*/

while (!time_up)
{
if (current_chord != ((P1 ^ 0xFF) ^ 0x00))

{
 /*Turn timer 0 off*/

TR0 = 0;

/*Reload Timer0 Value*/
 TL0 = TL0_VAL;

TH0 = TH0_VAL;

return;
}

Appendix 8

131

}
 }

/*Chord has been held a while; auto-repeat character*/
while (current_chord == ((P1 ^ 0xFF) ^ 0x00) && current_chord !=

0x00)
{

 send_char();

/*Delay after each autorepeat*/
for (i = 1; i < repeat_delay_time; i++)

{

time_up = 0;
TR0 = 1; /*Start timer 0*/

while (!time_up)
{
if (current_chord != ((P1 ^ 0xFF) ^ 0x00))

 {
 /*Turn timer 0 off*/

 TR0 = 0;

 /*Reload Timer0 Value*/
 TL0 = TL0_VAL;

 TH0 = TH0_VAL;

 return;
 }

}
 }

}

return;
}

/*TRANSLATE*/
char translate (byte chord)

{
return(chord_map[chord]);
}

/*SEND_CHAR*/
void send_char ()

{
printf("\n");
printf("%c", translate(current_chord));
printf("\n");
}

/*INIT_CHORD_MAP*/
void init_chord_map ()

Appendix 8

132

{
chord_map[1]='a';
chord_map[2]='b';
chord_map[3]='c';
chord_map[4]='d';
chord_map[5]='e';
chord_map[6]='f';
chord_map[7]='g';
chord_map[8]='h';
chord_map[9]='i';
chord_map[10]='j';
chord_map[11]='k';
chord_map[12]='l';
chord_map[13]='m';
chord_map[14]='n';
chord_map[15]='o';
chord_map[16]='p';
chord_map[17]='q';
chord_map[18]='r';
chord_map[19]='s';
chord_map[20]='t';
chord_map[21]='u';
chord_map[22]='v';
chord_map[23]='w';
chord_map[24]='x';
chord_map[25]='y';
chord_map[26]='z';
chord_map[127]='*';
}

Startup.a51
Written by Keil, minor modifications made for
utelizing the additional internal memory of the 8052
chip. (The code was written for the 8051
microprocessor).

;---

; This file is part of the C51 Compiler package
; Copyright (c) 1995-1996 Keil Software, Inc.
;---

; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;
; To link the modified STARTUP.OBJ file to your application use the
following
; BL51 invocation:
;

Appendix 8

133

; BL51 <your object file list>, STARTUP.OBJ <controls>
;
;
; MODIFIED -
; slight modification for CSEG AT 0 changed to CSEG AT 8030h
; to be used for ES 62 board - c. okino 11/10/99
; (This is as per Keil recommendations for adjusting "origin"
;
;
;---

;
; User-defined Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; ; the absolute start-address of IDATA memory is always 0
;IDATALEN EQU 80H ; the length of IDATA memory in bytes.
;*******MODIFIED FOR 8052 (There is twice the internal memory*********
IDATALEN EQU 100H ; the length of IDATA memory in bytes.

;
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
;
PDATASTART EQU 0H ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.
;
; Notes: The IDATA space overlaps physically the DATA and BIT areas of
the
; 8051 CPU. At minimum the memory space occupied from the C51
; run-time routines must be set to zero.
;---

;
; Reentrant Stack Initilization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
;---

;
; Page Definition for Using the Compact Model with 64 KByte xdata RAM

Appendix 8

134

;
; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.
;
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE EQU 0 ; define PPAGE number.
;
;---

NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

RSEG ?STACK
DS 1

EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP

CSEG AT 0h ; Modified for ES 62 Board **Modified back!
-KL
?C_STARTUP: LJMP STARTUP1

RSEG ?C_C51STARTUP

STARTUP1:

IF IDATALEN <> 0
MOV R0,#IDATALEN - 1
CLR A

IDATALOOP: MOV @R0,A
DJNZ R0,IDATALOOP

ENDIF

IF XDATALEN <> 0
MOV DPTR,#XDATASTART
MOV R7,#LOW (XDATALEN)

 IF (LOW (XDATALEN)) <> 0
MOV R6,#(HIGH XDATALEN) +1

 ELSE
MOV R6,#HIGH (XDATALEN)

 ENDIF
CLR A

XDATALOOP: MOVX @DPTR,A
INC DPTR
DJNZ R7,XDATALOOP
DJNZ R6,XDATALOOP

ENDIF

IF PPAGEENABLE <> 0
MOV P2,#PPAGE

ENDIF

Appendix 8

135

IF PDATALEN <> 0
MOV R0,#PDATASTART
MOV R7,#LOW (PDATALEN)
CLR A

PDATALOOP: MOVX @R0,A
INC R0
DJNZ R7,PDATALOOP

ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)

MOV ?C_XBP,#HIGH XBPSTACKTOP
MOV ?C_XBP+1,#LOW XBPSTACKTOP

ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)

MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF

MOV SP,#?STACK-1
LJMP ?C_START

END

Appendix 9

136

Prototype #1 Electronic Schematics

Hand Unit

Base Station

Appendix 10

137

CODE FOR GENERATING A
HAND SIZE HISTOGRAM

This MATLAB script generates two hand length
histograms, one from data obtained from the Umich:

(http://www.engin.umich.edu/class/ioe433/Biomechanics
/Handsurvey.html)

and the other from data obtained through a survey at
Dartmouth.

%hand_size.m

%plots a histogram of hand length data from a biomechanics study
%at U Michigan
%(http://www.engin.umich.edu/class/ioe433/Biomechanics/Handsurvey.html)

%hand length: distal wrist crease to end of third digit

diary handsize_results;

UMHandLengths = [18.4 16.7 17.1 18.5 17.4 18 18.3 18.6 16.8 16.5 18.7 ...
18.5 20.1 20.1 20 19.8 18.9 18.2 19.8 19 19.5 19.4 ...
16.8 18 19.5 16 17.5 21.2 20.2 20.4 19.1 ...
19.1 20.5 19.5 17.6 19.2 18.4 18.1];

Bins = [10:25];

UMsd = std(UMHandLengths);
UMmed =median(UMHandLengths);
disp(['UMich Study Median:', num2str(UMmed)]);
disp(['UMich Study Standard Deviation:', num2str(UMsd)]);

subplot(2,1,1)
plot(0,0);
hist(UMHandLengths, Bins)

hist_A = gca;
title('Histogram of Hand Lengths -- UMichigan Study Data');
xlabel('Hand Length from Distal Wrist Crease to 3rd Finger Tip (cm)');
ylabel('People (Test Group Size: 38)');

Appendix 10

138

DCHandLengths = [19 20 19.7 15.5 18.8 18 20.4 19 20.5 21 17 16.5 ...
 17.5 19 19 19 18.5 20 21];

Bins = [10:25];

DCsd = std(DCHandLengths);
DCmed =median(DCHandLengths);
disp(['Dartmouth Study Median:', num2str(DCmed)]);
disp(['Dartmouth Study Standard Deviation:', num2str(DCsd)]);

subplot(2,1,2)
gca = plot(0,0);
hist(DCHandLengths, Bins)

hist_A = gca;
title('Histogram of Hand Lengths -- Dartmouth Study Data');
xlabel('Hand Length from Distal Wrist Crease to 3rd Finger Tip (cm)');
ylabel('People (Test Group Size: 19)');

diary off;

Appendix 11

139

Weight Survey

What is the maximum acceptable weight, in number of
quarters, for this one handed typing solution?

Maximum Allowable Weight Survey

Name Weight (in Quarters) Weight (g)
Scott Milne 56 336
Shayam 44 264
Lauren Newton 36 216
StephenLee 44 264
Mitch Yashiro 74 444
Leah Platenik 56 336
Kate Turpin 56 336
Joe Brown 36 216
Will Nessle 43 258

ave: 297g

Appendix 12

140

FIRMWARE -- Final Prototype

The following programs were written/adapted for
driving the 8052 microprocessor and accessing PC AT
Keyboard port.

pckey.c
__

/*
PCKEY.C
Krispin Leydon
Spring 2000

FUNCTIONAL DESCRIPTION:
This program is the controlling software for a one handed "chording" PC
keyboard.
Serial output functions modified from code written by Jim Greene,
Signetics Corporation.
*/

/*Include Directives*/
#include <reg52.h> /* define 8052 registers */
#include <stdio.h> /* define I/O functions */

/*Defines*/
#define bool bit
#define byte unsigned char

/*Static Variable & Constants*/
static const byte TL0_VAL = 0x66; /*TL0 & TH0: -922 base10*/

 /*(to count .001sec)*/
static const byte TH0_VAL = 0xFC;
static const byte TH1_VAL = 0xFD; /*9600 Baud (with 11.0592MHz Xtal)*/
static const byte TL2_VAL = 0xEE; /*TL2 & TH2: 65518 base10*/

 /*(to count .0002 sec; a half kbdclk=25KHz
cycle)*/
static const byte TH2_VAL = 0xFF;

/*Global Variables & Constants*/
data byte prev_chord = 0;
bdata byte current_chord = 0;
data byte key_code = 0;
data byte settle_time = 150;

Appendix 12

141

data unsigned short int time_before_repeat = 500;
data unsigned short int repeat_delay_time = 60;
bdata bit time0_up = 0;
bdata bit time2_up = 0;
bdata bit data_bit = 0;
bdata bit parity_bit = 0;
bdata bit shift_state = 0;
bdata bit alt_state = 0;
bdata bit control_state = 0;
bdata bit special_case = 0;
sbit data_in = P3 ^ 2;
sbit data_out = P3 ^ 3;
sbit clk_in = P3 ^ 4;
sbit clk_out = P3 ^5;

/*Prototypes*/
byte inverse_of_P1(); /*Returns the Port 1 byte -- all bits complemented*/
bool chord_is_changing (); /*Returns 1 when a new chord begins/ends*/
bool settled (); /*Returns 1 when a chord is maintained for x msec*/
void auto_repeat (); /*Wait to see if "typematic" action is necessary*/
void send_make (byte tomake); /*Sends make code to PC AT bus*/
void send_break (byte tobreak); /*Sends break code to PC AT bus*/
void send_byte (byte tosend); /*Sends byte to PC AT bus*/
void send_bit (); /*Sends data_bit to PC AT bus*/
void delay(byte msec_delay); /*creates a delay*/
byte translate (byte chord); /*Maps chords to chars*/

/*TIMER0_ISR -- Interrupt service routine*/
/*Fires each millisecond, then sets flag "time0_up" to 1*/
/*timer is turned on and flag reset from within other functions.*/
void timer0_isr (void) interrupt 1

{
/*Set flag*/
time0_up = 1;

/*Turn timer 0 off*/
TR0 = 0;

/*Reload Timer0 Value*/
TL0 = TL0_VAL;
TH0 = TH0_VAL;

return;
}

/*TIMER2_ISR -- Interrupt service routine*/
/*Fires each .0002 sec; a half kbdclk=25KHz cycle*/
/*then sets flag "time2_up" to 1*/
/*timer is turned on and flag reset from within other functions.*/
void timer2_isr (void) interrupt 5

{

Appendix 12

142

/*Set flag*/
time2_up = 1;
TF2 = 0;
EXF2 = 0;

/*Turn timer 2 off*/
TR2 = 0;

/*Reload Timer0 Value*/
TL2 = TL2_VAL;
TH2 = TH2_VAL;

return;
}

/*MAIN*/
void main ()

{
/*Initialize 8051 serial I/O stuff*/
TMOD = 0x21;
T2CON = 0x41;
TL0 = TL0_VAL;
TH0 = TH0_VAL;
TH1 = TH1_VAL;
TL2 = TL2_VAL;
TH2 = TH2_VAL;
SCON = 0x5a;
TCON = 0xc0;
PT0 = 0; /*Set timer 0 interrupt to low priority*/
ET0 = 1; /*Enable timer 0 interrupt*/
PT2 = 0; /*Set timer 2 interrupt to low priority*/
ET2 = 1; /*Enable timer 2 interrupt*/
EA = 1; /*Global interrupt enable*/

/*Initialize Other 8051 stuff*/
P1 = 0xFF;

/*Initial Prompt*/
 printf("\nType!\n") ;

/*main (infinite) loop*/
 while(1)

{
 /*Write All 1s to Port1 Input Bits -- if any are 0 when read,
means input happened*/

P1 = 0xFF;

/*Test to see if user has begun to enter a new chord*/
if (chord_is_changing())

{
 /*New Chord Started:*/
 /*Wait until the value of P1 settles.*/

Appendix 12

143

/* (Wait until the value of P1 doesn't
 /* change for a period of x msec).*/

 while(!settled())
 {
 }

/*Send character corresponding to chord to*/
/*PC. If chord is held for a period*/
/*of y msec, start repeating the chord (typmatic
action--yeah!).*/

 if (current_chord != 0x00 &&
current_chord != 0x40 &&
current_chord != 0x80 &&
current_chord != 0xC0)

 {
/*Send chord to dumb terminal*/
printf("\n");
printf("%bx", current_chord);
printf("\n");
/*putchar(current_chord);*/

 /*Send make and break codes*/
 key_code = translate(current_chord);

send_make(key_code);
 send_break(key_code);

/*Maybe repeat*/
auto_repeat();
}

}
}

}

/*INVERSE_OF_P1*/
byte inverse_of_P1 ()

{
bdata byte result;

/*Flip all but the top 2 bits*/
result = ((P1 ^ 0x3F) ^ 0x00);

return(result);
}

/*CHORD_IS_CHANGING*/
bool chord_is_changing ()

{
if (current_chord != inverse_of_P1())

{
prev_chord = current_chord;
current_chord = (inverse_of_P1());
return (1);

Appendix 12

144

}

 else
return (0);

 }

/*SETTLED*/
bool settled ()

{
data byte i;

for (i = 1; i < settle_time; i++)
{
time0_up = 0;
TR0 = 1; /*Start timer 0*/
while (!time0_up)

{
if (chord_is_changing ())

{
 /*Chord hasn't settled.*/

/*Turn timer 0 off*/
TR0 = 0;

/*Reload Timer0 Value*/
 TL0 = TL0_VAL;

TH0 = TH0_VAL;

return(0);
}

}
}

/*Chord has settled!*/
return(1);
}

/*AUTO_REPEAT*/
void auto_repeat ()

{
data unsigned short int i; /*an iterator variable*/

/*Wait for chord to be held for a sufficient ammount of time*/
/*Return if chord changes during this wait period*/
for (i = 1; i < time_before_repeat; i++)

{

time0_up = 0;
TR0 = 1; /*Start timer 0*/

while (!time0_up)
{
if (current_chord != inverse_of_P1())

{

Appendix 12

145

 /*Turn timer 0 off*/
TR0 = 0;

/*Reload Timer0 Value*/
 TL0 = TL0_VAL;

TH0 = TH0_VAL;

return;
}

}
 }

/*Chord has been held a while; auto-repeat character*/
while (current_chord == inverse_of_P1() &&

current_chord != 0x00 &&
current_chord != 0x40 &&
current_chord != 0x80 &&
current_chord != 0xC0)

 {
/*Send chord to dumb terminal*/
printf("\n");
printf("%bx", current_chord);
printf("\n");

 /*Send make and break codes*/

key_code = translate(current_chord);
send_make(key_code);

 send_break(key_code);

/*Delay after each autorepeat*/
for (i = 1; i < repeat_delay_time; i++)

{

time0_up = 0;
TR0 = 1; /*Start timer 0*/

while (!time0_up)
{
if (current_chord != inverse_of_P1())

 {
 /*Turn timer 0 off*/

 TR0 = 0;

 /*Reload Timer0 Value*/
 TL0 = TL0_VAL;

 TH0 = TH0_VAL;

 return;
 }

}
 }

}

return;
}

Appendix 12

146

/*SEND_MAKE*/
void send_make (byte tomake)

{

/*Special Cases -- sending is handled within translate function*/
if (special_case || key_code == 0x00)

return;

/*Normal Cases*/
 if (shift_state)
 send_byte(0x12); /*Make <shift>*/

if (control_state)
send_byte(0x14); /*Make <cntrl>*/

if (alt_state)

send_byte(0x11); /*Make <alt>*/

 send_byte(tomake); /*Make 'char'*/

return;
}

/*SEND BREAK*/
void send_break (byte tobreak)

{
/*Special Cases -- sending is handled within the translate

function*/
if (special_case || key_code == 0x00)

return;

/*Normal Cases*/
 send_byte(0xF0); /*Break 'char' part1*/
 send_byte(tobreak); /*Break 'char' part2*/

if (alt_state)
{

 send_byte(0xF0); /*Break <alt> part1*/
send_byte(0x11); /*Break <alt> part2*/

 }

 if (control_state)

{
 send_byte(0xF0); /*Break <control> part1*/

send_byte(0x14); /*Break <control> part2*/

 }

if(shift_state)
 {
 send_byte(0xF0); /*Break <shift> part1*/
 send_byte(0x12); /*Break <shift> part2*/
 }

Appendix 12

147

}

/*SEND_BYTE*/
void send_byte (byte to_send)

{
byte i; /*an iterator variable*/
bdata bit done; /*a loop exit flag*/
byte to_send_copy; /*a working copy of byte to be sent (it gets

destroyed)*/

/*Make a working copy of byte to send*/
to_send_copy = to_send;

/*Determine parity bit necessary for odd parity.
(Even parity bit for accumulator contents is given in PSW.0.
Complement this to get odd parity bit)*/
ACC = to_send_copy;
parity_bit = (((PSW ^ 0) ^ 1) ^ 0);

/*Loop until both clock and data lines are high (a hack)*/
done = 0;
while (!done)

{
clk_in = 1;
data_in = 1;
if (clk_in == 1 && data_in == 1)

done = 1;
}

/*Send start bit */
data_bit = 0;
send_bit();

/*Send to_send_copy, starting with LSB, ending with MSB*/
for (i=0; i < 8; i++)

{
/*Get LSB of to_send_copy (the data_bit)*/
data_bit = to_send_copy & 0x01;

/*Send data bit */
send_bit();

/*Right-shift to_send_copy once*/
to_send_copy = to_send_copy / 0x02;
}

/*Send parity bit */
data_bit = parity_bit;
send_bit();

/*Send stop bit */
data_bit = 1;
send_bit();

Appendix 12

148

/*Raise Clock and Data lines*/
clk_out = 1;
data_out = 1;

/*Wait a bit*/
delay(1);
}

/*SEND_BIT*/
void send_bit ()

{
/*Put data_bit on the data line*/
data_out = data_bit;

/*Wait half a clock period*/
time2_up = 0;
TR2 = 1; /*Start timer 2*/
while (!time2_up)

{
}

/*Create falling edge*/
clk_out = 0;

/*Wait half a clock period*/
time2_up = 0;
TR2 = 1; /*Start timer 2*/
while (!time2_up)

{
}

/*Create rising edge*/
clk_out = 1;
}

/*DELAY*/
void delay(byte msec_delay)
 {
 data byte i;

 for (i = 1; i < msec_delay; i++)
{
time0_up = 0;
TR0 = 1; /*Start timer 0*/

while (!time0_up)
 {
 }

 }
}

Appendix 12

149

/*TRANSLATE*/
byte translate (byte chord)

{
byte make_code = 0x00;
control_state = 0;
shift_state = 0;
alt_state = 0;
special_case = 0;

/*Letter Key Codes*/
if (chord==0x14) { shift_state = 0; make_code = 0x1C; } /*a*/
if (chord==0x54) { shift_state = 1; make_code = 0x1C; } /*A*/

 if (chord==0x17) { shift_state = 0; make_code = 0x32; } /*b*/
if (chord==0x57) { shift_state = 1; make_code = 0x32; } /*B*/

 if (chord==0x26) { shift_state = 0; make_code = 0x21; } /*c*/
if (chord==0x66) { shift_state = 1; make_code = 0x21; } /*C*/

 if (chord==0x1c) { shift_state = 0; make_code = 0x23; } /*d*/
if (chord==0x5C) { shift_state = 1; make_code = 0x23; } /*D*/

 if (chord==0x03) { shift_state = 0; make_code = 0x24; } /*e*/
if (chord==0x43) { shift_state = 1; make_code = 0x24; } /*E*/

 if (chord==0x20) { shift_state = 0; make_code = 0x2B; } /*f*/
if (chord==0x60) { shift_state = 1; make_code = 0x2B; } /*F*/

 if (chord==0x31) { shift_state = 0; make_code = 0x34; } /*g*/
if (chord==0x71) { shift_state = 1; make_code = 0x34; } /*G*/

 if (chord==0x12) { shift_state = 0; make_code = 0x33; } /*h*/
if (chord==0x52) { shift_state = 1; make_code = 0x33; } /*H*/

 if (chord==0x15) { shift_state = 0; make_code = 0x43; } /*i*/
if (chord==0x55) { shift_state = 1; make_code = 0x43; } /*I*/

 if (chord==0x25) { shift_state = 0; make_code = 0x3B; } /*j*/
if (chord==0x65) { shift_state = 1; make_code = 0x3B; } /*J*/

 if (chord==0x09) { shift_state = 0; make_code = 0x42; } /*k*/
if (chord==0x49) { shift_state = 1; make_code = 0x42; } /*K*/

 if (chord==0x05) { shift_state = 0; make_code = 0x4B; } /*l*/
if (chord==0x45) { shift_state = 1; make_code = 0x4B; } /*L*/

 if (chord==0x23) { shift_state = 0; make_code = 0x3A; } /*m*/
if (chord==0x63) { shift_state = 1; make_code = 0x3A; } /*M*/

 if (chord==0x24) { shift_state = 0; make_code = 0x31; } /*n*/
if (chord==0x64) { shift_state = 1; make_code = 0x31; } /*N*/

 if (chord==0x10) { shift_state = 0; make_code = 0x44; } /*o*/
if (chord==0x50) { shift_state = 1; make_code = 0x44; } /*O*/

 if (chord==0x13) { shift_state = 0; make_code = 0x4D; } /*p*/
if (chord==0x53) { shift_state = 1; make_code = 0x4D; } /*P*/

 if (chord==0x27) { shift_state = 0; make_code = 0x15; } /*q*/
if (chord==0x67) { shift_state = 1; make_code = 0x15; } /*Q*/

 if (chord==0x30) { shift_state = 0; make_code = 0x2D; } /*r*/
if (chord==0x70) { shift_state = 1; make_code = 0x2D; } /*R*/

 if (chord==0x11) { shift_state = 0; make_code = 0x1B; } /*s*/
if (chord==0x51) { shift_state = 1; make_code = 0x1B; } /*S*/

 if (chord==0x0a) { shift_state = 0; make_code = 0x2C; } /*t*/
if (chord==0x4a) { shift_state = 1; make_code = 0x2C; } /*T*/

 if (chord==0x22) { shift_state = 0; make_code = 0x3C; } /*u*/
if (chord==0x62) { shift_state = 1; make_code = 0x3C; } /*U*/

 if (chord==0x16) { shift_state = 0; make_code = 0x2A; } /*v*/
if (chord==0x56) { shift_state = 1; make_code = 0x2A; } /*V*/

 if (chord==0x07) { shift_state = 0; make_code = 0x1D; } /*w*/

Appendix 12

150

if (chord==0x47) { shift_state = 1; make_code = 0x1D; } /*W*/
 if (chord==0x0f) { shift_state = 0; make_code = 0x22; } /*x*/

if (chord==0x4f) { shift_state = 1; make_code = 0x22; } /*X*/
 if (chord==0x2a) { shift_state = 0; make_code = 0x35; } /*y*/

if (chord==0x6a) { shift_state = 1; make_code = 0x35; } /*Y*/
 if (chord==0x1b) { shift_state = 0; make_code = 0x1A; } /*z*/

if (chord==0x5b) { shift_state = 1; make_code = 0x1A; } /*Z*/

/*Number Key Codes*/
 if (chord==0xa0) { shift_state = 0; make_code = 0x16; } /*1*/
 if (chord==0xB0) { shift_state = 0; make_code = 0x1E; } /*2*/
 if (chord==0x9C) { shift_state = 0; make_code = 0x26; } /*3*/
 if (chord==0x85) { shift_state = 0; make_code = 0x25; } /*4*/
 if (chord==0x92) { shift_state = 0; make_code = 0x2E; } /*5*/
 if (chord==0xAA) { shift_state = 0; make_code = 0x36; } /*6*/
 if (chord==0xB1) { shift_state = 0; make_code = 0x3D; } /*7*/
 if (chord==0xA3) { shift_state = 0; make_code = 0x3E; } /*8*/
 if (chord==0xA2) { shift_state = 0; make_code = 0x46; } /*9*/
 if (chord==0x90) { shift_state = 0; make_code = 0x45; } /*0*/

/*Other Symbol Key Codes*/
if (chord==0x0b || chord==0x4b)

{ shift_state = 1; make_code = 0x16; } /*!*/
 if (chord==0x94) { shift_state = 1; make_code = 0x1E; } /*@*/
 if (chord==0x9b) { shift_state = 1; make_code = 0x26; } /*#*/
 if (chord==0x91) { shift_state = 1; make_code = 0x25; } /*$*/
 if (chord==0x8F) { shift_state = 1; make_code = 0x2E; } /*%*/
 if (chord==0xa7) { shift_state = 1; make_code = 0x36; } /*^*/
 if (chord==0x99) { shift_state = 1; make_code = 0x3D; } /*&*/
 if (chord==0x87) { shift_state = 1; make_code = 0x3E; } /***/
 if (chord==0x2c || chord==0x6c || chord==0xac)

{ shift_state = 1; make_code = 0x46; } /*(*/
 if (chord==0x3c || chord==0x7c || chord==0xbc)
 { shift_state = 1; make_code = 0x45; } /*)*/
 if (chord==0x0d || chord==0x4d || chord==0x8d)

{ shift_state = 0; make_code = 0x4E; } /*-*/
 if (chord==0x8a) { shift_state = 0; make_code = 0x55; } /*=*/
 if (chord==0xa9) { shift_state = 0; make_code = 0x0E; } /*`*/
 if (chord==0x89) { shift_state = 0; make_code = 0x54; } /*[*/
 if (chord==0x96) { shift_state = 0; make_code = 0x5B; } /*]*/
 if (chord==0x8b) { shift_state = 0; make_code = 0x5D; } /**/
 if (chord==0x1d || chord==0x5d)

{ shift_state = 0; make_code = 0x4C; } /*;*/
 if (chord==0x19 || chord==0x59)

{ shift_state = 0; make_code = 0x52; } /*"*/
 if (chord==0x29 || chord==0x69)

 { shift_state = 0; make_code = 0x41; } /*,*/
 if (chord==0x1a || chord==0x5a)

 { shift_state = 0; make_code = 0x49; } /*.*/
 if (chord==0xa4){ shift_state = 0; make_code = 0x4A; } /*/*/

if (chord==0xa6) { shift_state = 1; make_code = 0x4E; } /*_*/
 if (chord==0x93) { shift_state = 1; make_code = 0x55; } /*+*/
 if (chord==0x9a) { shift_state = 1; make_code = 0x0E; } /*~*/
 if (chord==0xa5) { shift_state = 1; make_code = 0x54; } /*{*/
 if (chord==0xab) { shift_state = 1; make_code = 0x5B; } /*}*/
 if (chord==0x95) { shift_state = 1; make_code = 0x5D; } /*|*/
 if (chord==0x34 || chord==0x74)

Appendix 12

151

 { shift_state = 1; make_code = 0x4C; } /*:*/
 if (chord==0x2b || chord==0x6b)

 { shift_state = 1; make_code = 0x52; } /*'*/
 if (chord==0x97) { shift_state = 1; make_code = 0x41; } /*<*/
 if (chord==0x83) { shift_state = 1; make_code = 0x49; } /*>*/
 if (chord==0x21 || chord==0x61)

{ shift_state = 1; make_code = 0x4A; } /*?*/
 if (chord==0x02 || chord==0x42 || chord==0x82 || chord==0xc2)

 { shift_state = 0; make_code = 0x29; } /*<SPACE>*/
if (chord==0xd4) { shift_state = 0; make_code = 0x11; }
/*<ALT>*/

 if (chord==0x28 || chord==0x68 || chord==0xa8 || chord==0xe8)
 { shift_state = 0; make_code = 0x0D; }

/*<TAB>*/
 if (chord==0xe8) { shift_state = 1; make_code = 0x0D; }

/*<SHIFT-TAB>*/
 if (chord==0x01 || chord==0x41 || chord==0x81 || chord==0xC1)

{ shift_state = 0; make_code = 0x5A; }
/*<ENTER/RETURN>*/

 if (chord==0x04 || chord==0x44 || chord==0x84 || chord==0xc4)
 { shift_state = 0; make_code = 0x66; }

/*<BACKSPACE/DELETE>*/
 if (chord==0xc3) { shift_state = 0; make_code = 0x76; }

/*<ESC>*/
 if (chord==0x18 || chord==0x58 || chord==0x98)

/*<UP ARROW>*/
 {
 special_case = 1;
 send_byte(0xe0);
 send_byte(0x75);
 send_byte(0xe0);
 send_byte(0xf0);
 send_byte(0x75);
 }
 if (chord==0x06 || chord==0x46 || chord==0x86)

/*<DOWN ARROW>*/
 {
 special_case = 1;
 send_byte(0xe0);
 send_byte(0x72);
 send_byte(0xe0);
 send_byte(0xf0);
 send_byte(0x72);
 }
 if (chord==0x08 || chord==0x48 || chord==0x88)

/*<LEFT ARROW>*/
 {
 special_case = 1;
 send_byte(0xe0);

delay(3);
send_byte(0x6b);
delay(25);
send_byte(0xe0);
delay(3);
send_byte(0xf0);
delay(3);
send_byte(0x6B);

Appendix 12

152

 }
 if (chord==0x0c || chord==0x4c || chord==0x8c)

 /*<RIGHT ARROW>*/
 {
 special_case = 1;
 send_byte(0xE0);
 send_byte(0x74);
 send_byte(0xE0);
 send_byte(0xF0);
 send_byte(0x74);
 }
 if (chord==0xd8) /*<SHIFTED UP ARROW>*/
 {
 special_case = 1;

 send_byte(0x12);
 send_byte(0xE0);
 send_byte(0x75);
 send_byte(0xE0);
 send_byte(0xF0);
 send_byte(0x75);
 send_byte(0xF0);
 send_byte(0x12);
 }
 if (chord==0xc6) /*<SHIFTED DOWN ARROW>*/
 {
 special_case = 1;
 send_byte(0x12);
 send_byte(0xE0);
 send_byte(0x72);
 send_byte(0xE0);
 send_byte(0xF0);
 send_byte(0x72);
 send_byte(0xF0);
 send_byte(0x12);
 }
 if (chord==0xc8) /*<SHIFTED LEFT ARROW>*/
 {
 special_case = 1;
 send_byte(0x12);
 send_byte(0xE0);
 send_byte(0x6B);
 send_byte(0xE0);
 send_byte(0xF0);
 send_byte(0x6B);
 send_byte(0xF0);
 send_byte(0x12);
 }
 if (chord==0xcc) /*<SHIFTED RIGHT ARROW>*/
 {
 special_case = 1;

send_byte(0x12);
 send_byte(0xE0);
 send_byte(0x74);
 send_byte(0xE0);
 send_byte(0xF0);
 send_byte(0x74);
 send_byte(0xF0);

Appendix 12

153

 send_byte(0x12);
 }

 if (chord==0xe6) { shift_state = 0; make_code = 0x21; /*<CONTROL-
C>*/
 control_state = 1;}
 if (chord==0xcf) { shift_state = 0; make_code = 0x22; /*<CONTROL-
X>*/
 control_state = 1;}
 if (chord==0xd6) { shift_state = 0; make_code = 0x2a; /*<CONTROL-V*/
 control_state = 1;}

if (chord==0xe4) { shift_state = 0; make_code = 0x31; /*<CONTROL-N*/
 control_state = 1;}

if (chord==0xd0) { shift_state = 0; make_code = 0x44; /*<CONTROL-O*/
 control_state = 1;}

if (chord==0xd3) { shift_state = 0; make_code = 0x4d; /*<CONTROL-P*/
 control_state = 1;}

if (chord==0xe7) { shift_state = 0; make_code = 0x15; /*<CONTROL-Q*/
 control_state = 1;}

if (chord==0xd1) { shift_state = 0; make_code = 0x1b; /*<CONTROL-S*/
 control_state = 1;}

if (chord==0xc7) { shift_state = 0; make_code = 0x1d; /*<CONTROL-W*/
 control_state = 1;}
 if (chord==0xd7) /*<CONTROL-ALT-
DELETE>*/
 {
 special_case = 1;
 send_byte(0x14);
 send_byte(0x11);
 send_byte(0xE0);
 send_byte(0x71);

 send_byte(0xF0);
 send_byte(0x14);

 send_byte(0xF0);
 send_byte(0x11);

 send_byte(0xE0);
 send_byte(0xF0);
 send_byte(0x71);

delay(20);
 clk_out = 1;

data_out = 1;
delay(20);

 }

if (chord == 0xd9)
{ /*<'and'>*/
special_case = 1;

send_byte(0x1c);/*'a'*/
send_byte(0xF0);

 send_byte(0x1c);

send_byte(0x31);/*'n'*/

Appendix 12

154

 send_byte(0xF0);
 send_byte(0x31);

send_byte(0x23);/*'d'*/
send_byte(0xF0);

 send_byte(0x23);
}

delay(1);

return(make_code);
}

__

Startup.a51
This listing is already included in the code listing
for the prototype 1.
__
__

Appendix 13

155

PC-AT Keyboard Communications Protocol

"Make/Break" Key Codes

Data Transmission

Images reproduced from the website:
http://www.beyondlogic.org/keyboard/keybrd.htm
 1999-2000 Craig Peacock, Feb. 28 2000.

Craig Peacock

Appendix 14

156

Prototype #2 Electronic Schematics
Hand Unit

Base Station

Appendix 15

157

CODE FOR TESTING CHORD
"INTUITIVENESS"

Written by Michael Fromberger

This Java program displays a picture of a hand, with
botton contact locations marked as circles. The
program randomly cycles through pictures of all the
possible button combinations, and prompts the user to
copy these combinations using the chording keyboard.
For each button combination (finger "chord"), the
program logs the following information:

1) Time taken to press (or skip) the chord.
2) Whether the chord was completed or skipped.
3) The number of error chords pressed before a
correct press or a skip.

"The program requires Java 1.2.x
or higher, and a copy of the CommAPI from
http://java.sun.com/,
so that it can talk to the COM ports on your PC"
(Mike).

Fingers.java
__
/*

Fingers.java

Main driver for the chording keyboard tester

Shuffle all the possible combinations of keys, display them k times (for some
small constant k). Record how long until they got it right, target keystroke,
and number of misses (i.e., how many false hits they got).

At startup, get the person's name, record that in the output file.

Give feedback after every time they press a key, of whether they got it right.
"right" or "try again"

 */

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.applet.*;
import java.io.*;

Appendix 15

158

public class Fingers
{

private static final int KEY_MASK = 0x3F;
private static final int DATA_POINTS = 63; // How many data points to

test
private static final String IMG_FILE = "hand.gif"; // File containing background

image
private static final String FRAME_TITLE = // Title of main frame

"Chording Keyboard Tester";
private static final int PAUSE_TIME = 1500; // Pause interval between

prompts
private static final int INTERTEST_PAUSE_TIME = 2000; // Pause interval

btwn tests

private static int[] testVector; // Values to test the
user on

private static int nextVector; // Index of
the next value to test

private static String userName; // Subject we are
testing now

private static DataPoint currentPoint; // Point we're gathering now
private static DataPoint[] dataPoints; // The data collected

so far

private static FingerWindow mainWindow;
private static boolean isRunning = false;
private static boolean isSkipping = false;

private static SerialHandler dataReader;

public static void main(String[] args)
{

// Get the user's name
try {

userName = getUserName();
} catch(UserCancelledException e) {

System.exit(0);
}

// Create the main window
mainWindow = new FingerWindow(FRAME_TITLE, IMG_FILE,

new
FingerButtonListener());

// Create the serial port handler
dataReader = new SerialHandler("COM1");

// Let's get this whole thing started, shall we?
mainWindow.show();

// Set up the data set to test the user with
testVector = new int[DATA_POINTS];
makePermutation(testVector);
nextVector = 0;
dataPoints = new DataPoint[DATA_POINTS];

// Wait until someone hits the start button
while(!isRunning) {

try {
Thread.sleep(100);

} catch(InterruptedException e) { }
}

// Set the buttons for the running mode
mainWindow.start();

// Loop until done, handling skips and all
while(isRunning) {

// Display the next test to be run
mainWindow.setCounter(DATA_POINTS - nextVector);

Appendix 15

159

mainWindow.setMessage("Ready...");
pause(PAUSE_TIME);
dataReader.flushData(); // Ignore held over stuff

mainWindow.setMessage("Go!");
currentPoint = new DataPoint(testVector[nextVector], 0);
mainWindow.setLights(testVector[nextVector]);
currentPoint.startTiming();

// While we're running, and haven't been told to skip...
while(isRunning && !isSkipping) {

// Check if there's anything pending on the input
if(dataReader.hasData()) {

// If so, get it
byte[] data = dataReader.getData();

// Convert the last thing that we caught being
entered

int key = (int)data[data.length - 1];

// See if it's the right key, and update display
if(currentPoint.checkValue(key & KEY_MASK)) {

mainWindow.setMessage("Correct!");
break;

} else {
mainWindow.setMessage("Sorry, try again!");

}
}
pause(5); // Ugh, I know this sucks, but...

}

// Handle a skip, if it occurred
if(isSkipping) {

currentPoint.cancel();
mainWindow.setMessage("Skipping this one");
isSkipping = false;

}

if(isRunning) {
pause(INTERTEST_PAUSE_TIME);
mainWindow.setLights(0);
dataPoints[nextVector] = currentPoint;
++nextVector;

}

// When we're done...
if(nextVector >= dataPoints.length)

isRunning = false;
}
System.out.println("Done with testing loop");

String fileName = userName.toLowerCase() + ".txt";
try {

mainWindow.setMessage("Saving data...");
PrintWriter outFile = new PrintWriter(new BufferedWriter(new

FileWriter(fileName)));
outFile.println("% Data for " + userName);
outFile.println("% " + nextVector + " data points collected");
if(nextVector == dataPoints.length)

outFile.println("% Data collection complete");
else

outFile.println("% Data collection interrupted");

outFile.println("%");
outFile.println("% Key\tDone\tTime\tErrors\n%");
for(int ix = 0; ix < nextVector; ix++)

outFile.println(dataPoints[ix]);

outFile.close();
} catch(IOException e) {

Appendix 15

160

try {
JOptionPane.showMessageDialog(null,

"Couldn't open file '" + fileName + "' for writing!");
} catch(NullPointerException npe) {

// ignore...
}

}

mainWindow.setMessage("Goodbye!");
mainWindow.hide();
System.exit(0);

} // end of main()

// Use a an input dialog to get the user's name...
public static String getUserName() throws UserCancelledException
{

String output = null;

while(true) {
output = JOptionPane.showInputDialog("Please enter your name");

if(output.equals("")) {
try {

JOptionPane.showMessageDialog(null,
 "I'm

sorry, but I need something besides "
+ "blank

for your name!");
} catch(NullPointerException e) {

// ignore...
}

} else if(output == null) {
throw new UserCancelledException();

} else {
return output;

}
}

} // end of getUserName()

// Make an array of integers into a permutation of the values from
// one to the length of the array. Uses Knuth's classic shuffle.
public static void makePermutation(int[] array)
{

for(int ix = 0; ix < array.length; ix++)
array[ix] = ix + 1;

for(int ix = array.length - 1; ix >= 0; ix--) {
int which = (int)Math.floor(Math.random() * ix);

int tmp = array[which];
array[which] = array[ix];
array[ix] = tmp;

}

} // end of makePermutation()

// This is where all button pressees in the main window are handled
private static class FingerButtonListener implements ActionListener
{

public void actionPerformed(ActionEvent evt)
{

JButton btn = (JButton)evt.getSource();
String text = btn.getText();

System.out.println("Clicked: " + text);
if(text.equals("Start")) {

synchronized(mainWindow) { isRunning = true; }
} else if(text.equals("Skip")) {

synchronized(mainWindow) { isSkipping = true; }

Appendix 15

161

} else { // Quit button
synchronized(mainWindow) { isRunning = false; }

}
}

} // end of class FingerActionListener

// This is thrown by the getUserName() function, above...
private static class UserCancelledException extends Exception
{

// Doesn't contain anything...

} // end of class UserCancelledException

private static void pause(int ms)
{

try {
Thread.sleep(ms);

} catch(InterruptedException e) { }
}

} // end of class Fingers

__

DataPoint.java
__
/*

DataPoint.java

A single data element collected from the user, encapsulated in a
package

by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 2000 The Trustees of Dartmouth College

 */

public class DataPoint
{

private int target; // What element we were
trying to test

private long startTime; // When we started timing
private long finishTime; // When we finished timing
private boolean cancelled; // Did the user abort this data

point?
private int errors; // How many errors did the

user make?

public DataPoint(int target, long startTime)
{

this.target = target;
this.startTime = startTime;
this.finishTime = 0;
this.cancelled = false;
this.errors = 0;

} // end of DataPoint() constructor

public DataPoint()

Appendix 15

162

{
this(0, 0);

} // end of DataPoint() constructor

public void setTarget(int target) { this.target = target; }
public void startTiming() { startTime = System.currentTimeMillis();

}
public void finishTiming() { finishTime =

System.currentTimeMillis(); }
public void cancel() { finishTiming(); cancelled = true; }
public void error() { errors++; }

// Check a candidate value, and stop timing if it's a good one;
record an

// error if it is not
public boolean checkValue(int v)
{

if(v == target) {
finishTiming();
return true;

} else {
error();
return false;

}
}

public String toString()
{

return Integer.toHexString(target) + "\t" +
(cancelled ? "0" : "1") + "\t" +
(finishTime - startTime) + "\t" +
errors;

} // end of toString()

// Test driver for the DataPoint class
public static void main(String[] args)
{

DataPoint one = new DataPoint(), two = new DataPoint(101, 0);

one.startTiming();
two.startTiming();

try {
Thread.sleep(593);

} catch(InterruptedException e) {
// ignore

}

one.cancel();
two.error();
two.error();
two.finishTiming();

System.out.println("one => " + one);
System.out.println("two => " + two);

Appendix 15

163

} // end of main()

} // end of class DataPoint

__

FingerWindow.java
__
/*

FingerWindow.java

Main user interface object for the chording keyboard tester.

by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 2000 The Trustees of Dartmouth College

 */

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class FingerWindow
{

private static int[] lightx = { // x coordinates of the
finger pad lights

211, 135, 82, 60, 45, 20
};
private static int[] lighty = { // y coordinates of the

finger pad lights
 43, 25, 66, 42, 129, 104

};
private static final int LED_SIZE = 20; // Size of the finger

pad lights (pixels)

private JFrame mainFrame; // The main
window

private LEDPanel lightBoard; // Where the lights are
displayed

private JButton start, skip, quit; // Buttons the
user can press

private JLabel feedback; // Where the
status goes...

private JLabel countdown; //
Countdown marker

public FingerWindow(String title, String imageFile, ActionListener
buttonMaster)

{
// An LEDPanel is the main display element here

Appendix 15

164

lightBoard = new LEDPanel();

// Force the image to be loaded, so we can get its size
Image pic =

Toolkit.getDefaultToolkit().getImage(imageFile);
MediaTracker mt = new MediaTracker(lightBoard);
mt.addImage(pic, 0);
try { mt.waitForAll(); } catch(InterruptedException e) { }

// Set it to be the background image of the LED panel
lightBoard.setBackgroundImage(pic);

// Plug in the LED's. This is a little hackish, since the
values are given

// computed empirically, but it works for this application
for(int ix = 0; ix < lightx.length; ix++) {

lightBoard.addLED(lightx[ix], lighty[ix], LED_SIZE,
false);

}

// Create the main frame, set its title and background
colour

mainFrame = new JFrame();
mainFrame.setTitle(title);
mainFrame.setBackground(Color.white);

// Get out the main content pane, since Swing likes us to
add interface elements

// there, instead of to the frame itself
Container pane = mainFrame.getContentPane();

// Create a panel to hold the input elements, and set its
background colour

JPanel bbox = new JPanel();
bbox.setBackground(Color.white);

// Create a box to put the buttons in, aligned horizontally
bbox.setLayout(new BoxLayout(bbox, BoxLayout.X_AXIS));

// Create the buttons, and bind them to the action listener
start = new JButton("Start");
skip = new JButton("Skip");
quit = new JButton("Quit");

skip.setEnabled(false); // skip is initially disabled...

// Create an action listener to handle the buttons, and
register it with the

// buttons. We'll use the same listener for all the
buttons, in this case

start.addActionListener(buttonMaster);
skip.addActionListener(buttonMaster);
quit.addActionListener(buttonMaster);

// Create the label used to give the user feedback about
the state of things

feedback = new JLabel("xxxxxxxxxxxxxxxxxxxxxxxxx");

Appendix 15

165

feedback.setForeground(Color.red);
feedback.setFont(new Font("Serif", 0, 20));

// Create the label used to give the user a countdown on
the number of tests

countdown = new JLabel();
countdown.setForeground(Color.blue.darker());
countdown.setFont(new Font("Serif", 0, 20));

// Drop the buttons into the panel...
bbox.add(Box.createHorizontalStrut(3)); // leave

space around the edge
bbox.add(start);
bbox.add(Box.createHorizontalStrut(6)); // leave

space between the buttons
bbox.add(skip);
bbox.add(Box.createHorizontalStrut(6));
bbox.add(quit);
bbox.add(Box.createHorizontalStrut(10)); // leave space

before the label
bbox.add(countdown);
bbox.add(Box.createHorizontalStrut(10)); // Leave space

between labels
bbox.add(feedback);
bbox.add(Box.createHorizontalStrut(3)); // leave

space around the edge

// Put the pieces into the frame's content pane
pane.setBackground(Color.white);
pane.add(lightBoard, BorderLayout.CENTER);
pane.add(bbox, BorderLayout.SOUTH);

// Oh, and by the way, update the frame for all these

outFile.println("%");
outFile.println("% Key\tDone\tTime\tErrors\n%");
for(int ix = 0; ix < nextVector; ix++)

outFile.println(dataPoints[ix]);

outFile.close();
} catch(IOException e) {

try {
JOptionPane.showMessageDialog(null,

"Couldn't open file '" + fileName + "' for
writing!");

} catch(NullPointerException npe) {
// ignore...

}
}

mainWindow.setMessage("Goodbye!");
mainWindow.hide();
System.exit(0);

} // end of main()
= 1);

LED led = lightBoard.getLED(bit);

Appendix 15

166

led.setLit(on);
value >>>= 1;

}

lightBoard.repaint();

} // end of setupLights()

// Set the message on the feedback label
public void setMessage(String msg)
{

feedback.setText(msg);

} // end of setMessage()

// Set the counter
public void setCounter(int value)
{

countdown.setText(Integer.toString(value));
}

} // end of class FingerWindow
__

LED.java
__
/*

LED.java

Defines a simple graphical equivalent of a light-emitting diode,
that can

be used as a feeback element (like a label, only graphical).

by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 2000 The Trustees of Dartmouth College

 */

import java.awt.*;

public class LED
{

private final Color DEFAULT_LIT_COLOR = Color.red;
private final Color DEFAULT_OUT_COLOR = Color.white;

private Color litColor, outColor; // Colour when lit up
or blacked out

private Point center; // Where the LED
is located (center point)

private int size; // The radius of
the LED

Appendix 15

167

private boolean lit; // Whether it's
currently lit up

/**
Construct a new LED with given location, size, and colour

characteristics.

@param center The center of where the LED should be drawn
@param size The diameter of the LED
@param litColor What colour the LED should be when lit up
@param outColor What colour the LED should be when not lit

 */
public LED(Point center, int size, Color litColor, Color outColor)
{

this.litColor = litColor;
this.outColor = outColor;
this.center = center;
this.size = (size + 1) / 2;
lit = false;

}

// Like the above constructor, except with the location given as
(x, y) values

public LED(int x, int y, int size, Color lit, Color out)
{

this(new Point(x, y), size, lit, out);

}

// Like the above constructor, except with colour values
defaulted

public LED(Point center, int size)
{

this(center, size, Color.black, Color.white);
litColor = DEFAULT_LIT_COLOR;
outColor = DEFAULT_OUT_COLOR;

}

// Like the above constructor, except with colour values
defaulted and location

// given as (x, y) values
public LED(int x, int y, int size)
{

this(x, y, size, Color.black, Color.white);
litColor = DEFAULT_LIT_COLOR;
outColor = DEFAULT_OUT_COLOR;

}

// Various methods for handling the lit-up state of the LED
public boolean isLit() { return lit;}
public void light() { lit = true; }
public void off() { lit = false; }
public void toggle() { lit = !lit; }
public void setLit(boolean to) { lit = to; }

Appendix 15

168

// Drawing the LED
public void draw(Graphics area)
{

if(lit)
area.setColor(litColor);

else
area.setColor(outColor);

area.fillOval(center.x - size, center.y - size, 2 * size, 2 *
size);

if(lit)
area.setColor(litColor.darker());

else
area.setColor(Color.black);

area.drawOval(center.x - size, center.y - size, 2 * size, 2 *
size);

area.drawOval(center.x - size + 1, center.y - size + 1, 2 *
size - 2, 2 * size - 2);

}

// Test driver
public static void main(String[] args)
{

System.out.println("Test driver for LED class\n");

Frame window = new Frame("LED Test");
LED l1, l2, l3, l4;

l1 = new LED(20, 20, 20); // Default colour LED
l2 = new LED(50, 20, 20, Color.green, Color.white);
l3 = new LED(80, 30, 20);
l4 = new LED(110, 40, 30, Color.blue, Color.white);

window.pack();
window.setSize(200, 80);
window.show();

try {
Thread.sleep(1000);

} catch(InterruptedException e) {
// ignore

}

Graphics area = window.getGraphics();
l1.light(); l1.draw(area);
l2.light(); l2.draw(area);
l3.draw(area);
l4.light(); l4.draw(area);

try {
Thread.sleep(5000);

} catch(InterruptedException e) {

Appendix 15

169

// ignore
}
window.dispose(); // Release frame back to the environment

}
}

// Here there be dragons

__

LEDPanel.java
__
/*

LEDPanel.java

A simple panel that displays a collection of LED objects

by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 2000 The Trustees of Dartmouth College

 */

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LEDPanel extends JPanel
{

private static final int PADDING = 5; // How many pixels of padding
around the content

private Image bg = null;
private LED[] lights;
private int numLED = 0;

// Create a new, empty LED panel
public LEDPanel()
{

super();

lights = new LED[4];
}

// Set the background image (if not set, no image is displayed)
public void setBackgroundImage(Image img)
{

bg = img;

Appendix 15

170

// Set the size of the panel to have room for the image,
plus some padding

int width = bg.getWidth(null);
int height = bg.getHeight(null);

setMinimumSize(new Dimension(width + 2 * PADDING, height + 2 *
PADDING));

setPreferredSize(new Dimension(width + 2 * PADDING, height + 2
* PADDING));

}

// Add another LED to the display
public void addLED(int x, int y, int size, boolean isLit)
{

LED newLED = new LED(x, y, size);

newLED.setLit(isLit);
lights[numLED++] = newLED;

// If we filled up the array of lights, grow it
if(numLED >= lights.length) {

LED[] tmp = new LED[2 * lights.length];

for(int ix = 0; ix < numLED; ix++)
tmp[ix] = lights[ix];

lights = tmp;
}

}

// How many LED's are currently in the set?
public int countLED() { return numLED; }

// Fetch one of the LED's, given its index. Note that we don't
check

// the given index -- if you go out of bounds, you'll get the
usual

// ArrayIndexOutOfBounds exception.
public LED getLED(int which)
{

return lights[which];

}

// Override the paint method so that the contents get painted
properly

public void paintComponent(Graphics page)
{

page.clearRect(0, 0, getWidth(), getHeight());

// Paint the background image, if there is one
if(bg != null) {

page.drawImage(bg, PADDING, PADDING, null);
}

// Draw in any LED's that are there...

Appendix 15

171

for(int ix = 0; ix < numLED; ix++)
lights[ix].draw(page);

}

// Simple test driver for the frame...
public static void main(String[] args) throws InterruptedException
{

final int LED_SIZE = 20; // How big are those
lights, anyway?

final int BUTTON_ROOM = 25; // How much extra space for a
button?

JFrame frm = new JFrame();
LEDPanel myPanel = new LEDPanel();
Image myImage =

Toolkit.getDefaultToolkit().getImage("hand.gif");

// Force the image to load
MediaTracker loader = new MediaTracker(frm);
loader.addImage(myImage, 0);
loader.waitForAll();

// Now, size the frame so it's big enough
int h = myImage.getHeight(null);
int w = myImage.getWidth(null);
frm.setSize(w + 2 * PADDING, h + 2 * PADDING + BUTTON_ROOM);

// Throw in some lights (assorted starting values)
myPanel.setBackgroundImage(myImage);
myPanel.addLED(20, 104, LED_SIZE, false);
myPanel.addLED(45, 129, LED_SIZE, false);
myPanel.addLED(60, 42, LED_SIZE, false);
myPanel.addLED(82, 66, LED_SIZE, false);
myPanel.addLED(135, 25, LED_SIZE, false);
myPanel.addLED(211, 43, LED_SIZE, false);

double d = Math.random();
byte b = (byte)Math.floor(d * 64);
int ix = 0;
while(b != 0) {

LED tmp = myPanel.getLED(ix++);

if((b & 1) == 1)
tmp.light();

b >>>= 1;
}

// Add and go
frm.getContentPane().add(myPanel, BorderLayout.CENTER);
frm.show();

}

}
__

Appendix 15

172

SerialHandler.java
__
/*

SerialHandler.java

by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 2000 The Trustees of Dartmouth College

Handle a simple form of input from the PC serial port, using the Sun
Java

CommAPI.
 */

import java.io.*;
import java.util.*;
import javax.comm.*;

public class SerialHandler implements SerialPortEventListener
{

static final int BUFFER_SIZE = 16;

private InputStream inStream;
private SerialPort commPort;
private boolean hasData;
private byte[] data;
private int numBytes;

public SerialHandler(String device)
{

Enumeration portList;
CommPortIdentifier portID;

hasData = false;
data = new byte[BUFFER_SIZE];

portList = CommPortIdentifier.getPortIdentifiers();
while(portList.hasMoreElements()) {

portID = (CommPortIdentifier)portList.nextElement();

// Scan for serial ports
if(portID.getPortType() ==

CommPortIdentifier.PORT_SERIAL) {
// Look for the port we're told to identify
if(portID.getName().equals(device)) {

System.out.println("Found port: " + device);
setupPort(portID);

}
}

}
} // end SerialHandler() constructor

public boolean hasData() { return hasData; }

Appendix 15

173

public byte[] getData()
{

byte[] out;

synchronized(data) {
out = new byte[numBytes];

for(int ix = 0; ix < numBytes; ix++)
out[ix] = data[ix];

hasData = false;
numBytes = 0;

}

return out;
}
public void flushData()
{

synchronized(data) {
hasData = false;
numBytes = 0;

}
}

private void setupPort(CommPortIdentifier portID)
{

// Try to open the serial port itself
try {

commPort = (SerialPort)portID.open("SerialHandler",
2000);

} catch(PortInUseException e) {
// ignore this, for now...sigh...

}

// Try to retrieve the input stream to associated with the
port

try {
inStream = commPort.getInputStream();

} catch(IOException e) {
// ignore this...

}

// Try to add a new event listener for this port
try {

commPort.addEventListener(this);

} catch(TooManyListenersException e) {
// ignore this...

}

commPort.notifyOnDataAvailable(true);

// We'll hard-wire the parameters, for this application
try {

Appendix 15

174

commPort.setSerialPortParams(9600, // bits per
second

SerialPort.DATABITS_8, // 8
data bits

SerialPort.STOPBITS_1, // 1
stop bit

SerialPort.PARITY_NONE); // no
parity

} catch(UnsupportedCommOperationException e) {
// Ignore this, for now...sigh...

}

} // end of setupPort()

// Handle reads from the serial port
public void serialEvent(SerialPortEvent evt)
{

switch(evt.getEventType()) {
case SerialPortEvent.DATA_AVAILABLE:

try {
synchronized(data) {

while(inStream.available() > 0) {
numBytes = inStream.read(data);
/*
System.out.println("data read: "

+ numBytes + " ");
for(int ix = 0; ix < numBytes;

ix++)
System.out.print(data[ix]

+ " ");
System.out.println();
 */

}
hasData = true;

}
} catch(IOException e) {

// Ignore this...
}
break;

default:
// ignore other types of serial events; the

keyboard only sends
// data, anyway...
break;

}

} // end of serialEvent()

} // end of class SerialHandler
__

Appendix 16

175

TIME-SORTED HEIRARCHY OF CHORDS

This array represents the averaged data obtained
from 10 trials by 10 different people running the
fingers.java application via the chording keyboard.
The data was averaged and sorted using SortChord.m.

 FingerChord Completed(0N-1Y) Time(msec) #Errors
000100 1.000 1442.182 0.000
000001 1.000 1449.455 0.000
000010 1.000 1608.000 0.000
101000 1.000 1616.000 0.000
001000 1.000 1743.455 0.000
001100 0.909 1868.182 0.545
011000 1.000 1967.455 0.000
000110 1.000 2115.545 0.091
000011 1.000 2116.727 0.182
001010 0.909 2205.909 0.273
010000 1.000 2398.091 0.000
010100 1.000 2403.364 0.091
100100 1.000 2418.909 0.000
010101 1.000 2632.000 0.182
010001 1.000 2645.636 0.182
110000 1.000 2683.727 0.818
010010 1.000 2687.455 0.182
000101 1.000 2867.545 0.091
011100 1.000 2933.273 0.636
100010 1.000 2986.000 0.364
100110 1.000 3042.545 0.636
100011 1.000 3194.636 0.545
110001 1.000 3426.818 0.545
000111 1.000 3449.364 0.273
101010 1.000 3475.727 0.545
100000 1.000 3482.364 0.000
010011 1.000 3547.818 0.636
011010 1.000 3795.364 1.091
010111 0.909 3958.455 0.636
001101 0.909 4320.818 0.455
101001 1.000 4533.909 0.364
001001 1.000 4580.091 0.455
010110 1.000 4698.000 1.000
110100 1.000 5026.364 1.182
100101 1.000 5873.727 0.909
101011 1.000 6792.636 2.636
011001 0.818 6918.182 1.273
001111 0.909 7008.455 2.091
011011 1.000 7291.364 2.818
100111 1.000 7341.182 3.273
001011 0.909 8160.818 2.364
111100 0.909 8324.727 3.182

Appendix 16

176

CHORD-HEIRARCHY (CONTINUED)
 FingerChord Completed(0N-1Y) Time(msec) #Errors

101100 0.909 8344.636 2.636
100001 1.000 8432.182 0.091
011101 1.000 9744.818 3.455
011110 0.909 10135.364 5.727
111010 0.818 10340.455 4.273
110010 0.727 10469.455 4.636
111000 0.818 11565.818 5.909
001110 0.909 12266.091 4.000
101101 0.727 12942.273 8.000
110111 0.636 13756.909 12.000
110110 0.727 14586.455 6.182
011111 0.727 14962.455 13.182
111110 0.727 15116.091 8.909
111101 0.727 15508.727 8.273
110011 0.818 15679.727 11.364
111111 0.364 17176.364 9.545
110101 0.818 17727.273 13.818
111011 0.636 18404.545 12.273
101111 0.455 19564.364 10.091
101110 0.455 21971.636 9.545
111001 0.727 23201.455 21.091

Appendix 16

177

"Control" Chord Map Data Files

Started with 6-bit finger chords,

%control.txt: <six bit finger chord value> <control sequence>
000011 <ESC>
010111 <CTL-ALT-DEL>
100110 <CTRL-C>
100100 <CTRL-N>
010000 <CTRL-O>
010011 <CTRL-P>
100111 <CTRL-Q>
010001 <CTRL-S>
010110 <CTRL-V>
000111 <CTRL-W>
001111 <CTRL-X>
101000 <SHFT-TAB>
000001 <RETURN>
000010 <SPACE>
000100 <DELETE>
001000 <SHFT-LEFT>
001100 <SHFT-RIGHT>
011000 <SHFT-UP>
000110 <SHFT-DOWN>

Converted finger chords to decimal using
DecCord.m so that they could be piped into
perl script-- ChordPicGenerator-- generating
post script pictures of hands pressing the
appropriate chords.

%control3.txt: <decimal chord value> <control sequence>
20 <ALT>
 3 <ESC>
25 <"and">
23 <CTL-ALT-DEL>
38 <CTRL-C>
36 <CTRL-N>
16 <CTRL-O>
19 <CTRL-P>
39 <CTRL-Q>
17 <CTRL-S>
22 <CTRL-V>
 7 <CTRL-W>
15 <CTRL-X>
40 <SHFT-TAB>
 1 <RETURN>
 2 <SPACE>
 4 <DELETE>
 8 <SHFT-LEFT>
12 <SHFT-RIGHT>
24 <SHFT-UP>
 6 <SHFT-DOWN>

Appendix 16

178

Extended finger chords to 8 bits (the two
additional bits determine the "Control" case).
This was done via FullBin.m.

%control2.txt : <hex byte chord value> <control sequence>
C3 <ESC>
D7 <CTL-ALT-DEL>
E6 <CTRL-C>
E4 <CTRL-N>
D0 <CTRL-O>
D3 <CTRL-P>
E7 <CTRL-Q>
D1 <CTRL-S>
D6 <CTRL-V>
C7 <CTRL-W>
CF <CTRL-X>
E8 <SHFT-TAB>
C1 <RETURN>
C2 <SPACE>
C4 <DELETE>
C8 <SHFT-LEFT>
CC <SHFT-RIGHT>
D8 <SHFT-UP>
C6 <SHFT-DOWN>

Appendix 16

179

"Lower Case" Chord Map Data Files

Started with 6-bit finger chords,

%lower.txt: <six bit binary finger chord value> <character>
 010100a
010111 b
100110 c
011100 d
000011 e
100000 f
110001 g
010010 h
010101 i
100101 j
001001 k
000101 l
100011 m
100100 n
010000 o
010011 p
100111 q
110000 r
010001 s
001010 t
100010 u
010110 v
000111 w
001111 x
101010 y
011011 z
001101 -
011010 .
101001 ,
100001 ?
001011 !
110100 :
011101 ;
101011 '
011001 "
101100 (
111100)
101000 <TAB>
000001 <RETURN>
000010 <SPACE>
000100 <DELETE>
001000 <LEFT>
001100 <RIGHT>
011000 <UP>
000110 <DOWN>

Appendix 16

180

Converted finger chords to decimal using
DecCord.m so that they could be piped into
perl script-- ChordPicGenerator-- generating
post script pictures of hands pressing the
appropriate chords.

%lower3.txt: <decimal chord value> <character>
 20 a
23 b
38 c
28 d
 3 e
32 f
49 g
18 h
21 i
37 j
 9 k
 5 l
35 m
36 n
16 o
19 p
39 q
48 r
17 s
10 t
34 u
22 v
 7 w
15 x
42 y
27 z
13 -
26 .
41 ,
33 ?
11 !
52 :
29 ;
25 '
43 "
44 (
60)
40 <TAB>
 1 <RETURN>
 2 <SPACE>
 4 <DELETE>
 8 <LEFT>
12 <RIGHT>
24 <UP>
 6 <DOWN>

Appendix 16

181

Extended finger chords to 8 bits (the two
additional bits determine the "Lower" case).
This was done via FullBin.m.

%lower2.txt : <hex byte chord value> <character>
 14 a
17 b
26 c
1C d
03 e
20 f
31 g
12 h
15 i
25 j
09 k
05 l
23 m
24 n
10 o
13 p
27 q
30 r
11 s
0A t
22 u
16 v
07 w
0F x
2A y
1B z
0D -
1A .
29 ,
21 ?
0B !
34 :
1D ;
2B '
19 "
2C (
3C)
28 <TAB>
01 <RETURN>
02 <SPACE>
04 <DELETE>
08 <LEFT>
0C <RIGHT>
18 <UP>
06 <DOWN>

Appendix 16

182

"Math&Symbol" Chord Map Data Files

Started with 6-bit finger chords.

%mathsym.txt: <six bit binary finger chord value> <character>
010100 @
010111 <
100110 _
011100 3
000011 >
100000 1
110001 7
010010 5
010101 |
100101 {
001001 [
000101 4
100011 8
100100 /
010000 O
010011 +
100111 ^
110000 2
010001 $
001010 =
100010 9
010110]
000111 *
001111 %
101010 6
011011 #
001101 -
011010 ~
101001 `
001011 \
101011 }
011001 &
101100 (
111100)
101000 <TAB>
000001 <RETURN>
000010 <SPACE>
000100 <DELETE>
001000 <LEFT>
001100 <RIGHT>
011000 <UP>
000110 <DOWN>

Appendix 16

183

Converted finger chords to decimal using
DecCord.m so that they could be piped into
perl script-- ChordPicGenerator-- generating
post script pictures of hands pressing the
appropriate chords.

%mathsym3.txt: <decimal chord value> <character>
 20 @
23 <
38 _
28 3
 3 >
32 1
49 7
18 5
21 |
37 {
 9 [
 5 4
35 8
36 /
16 O
19 +
39 ^
48 2
17 $
10 =
34 9
22]
 7 *
15 %
42 6
27 #
13 -
26 ~
41 `
11 \
43 }
25 &
44 (
60)
40 <TAB>
 1 <RETURN>
 2 <SPACE>
 4 <DELETE>
 8 <LEFT>
12 <RIGHT>
24 <UP>
 6 <DOWN>

Appendix 16

184

Extended finger chords to 8 bits (the two
additional bits determine the "Math&Symbol"
case). This was done via FullBin.m.

%mathsym2.txt : <hex byte chord value> <character>
 94 @
97 <
A6 _
9C 3
83 >
A0 1
B1 7
92 5
95 |
A5 {
89 [
85 4
A3 8
A4 /
90 O
93 +
A7 ^
B0 2
91 $
8A =
A2 9
96]
87 *
8F %
AA 6
9B #
8D -
9A ~
A9 `
8B \
AB }
99 &
AC (
BC)
A8 <TAB>
81 <RETURN>
82 <SPACE>
84 <DELETE>
88 <LEFT>
8C <RIGHT>
98 <UP>
86 <DOWN>

Appendix 16

185

"Upper" Chord Map Data Files

Started with 6-bit finger chords.

%upper.txt: <six bit binary finger chord value> <character>
 010100A
010111 B
100110 C
011100 D
000011 E
100000 F
110001 G
010010 H
010101 I
100101 J
001001 K
000101 L
100011 M
100100 N
010000 O
010011 P
100111 Q
110000 R
010001 S
001010 T
100010 U
010110 V
000111 W
001111 X
101010 Y
011011 Z
001101 -
011010 .
101001 ","
100001 ?
001011 !
110100 :
011101 ;
101011 '
011001 """"
101100 (
111100)
101000 <TAB>
000001 <RETURN>
000010 <SPACE>
000100 <DELETE>

001000 <LEFT>
001100 <RIGHT>
011000 <UP>
000110 <DOWN>

Appendix 16

186

Converted finger chords to decimal using
DecCord.m so that they could be piped into
perl script-- ChordPicGenerator-- generating
post script pictures of hands pressing the
appropriate chords.

%upper3.txt: <decimal chord value> <character>
 20 A
23 B
38 C
28 D
 3 E
32 F
49 G
18 H
21 I
37 J
 9 K
 5 L
35 M
36 N
16 O
19 P
39 Q
48 R
17 S
10 T
34 U
22 V
 7 W
15 X
42 Y
27 Z
13 -
26 .
41 ,
33 ?
11 !
52 :
29 ;
25 '
43 "
44 (
60)
40 <TAB>
 1 <RETURN>
 2 <SPACE>
 4 <DELETE>
 8 <LEFT>
12 <RIGHT>
24 <UP>
 6 <DOWN>

Appendix 16

187

Extended finger chords to 8 bits (the two
additional bits determine the "Upper" case).
This was done via FullBin.m.

%upper2.txt : <hex byte chord value> <character>
54 A
57 B
66 C
5C D
43 E
60 F
71 G
52 H
55 I
65 J
49 K
45 L
63 M
64 N
50 O
53 P
67 Q
70 R
51 S
4A T
62 U
56 V
47 W
4F X
6A Y
5B Z
4D -
5A .
69 ,
61 ?
4B !
74 :
5D ;
6B '
59 "
6C (
7C)
68 <TAB>
41 <RETURN>
42 <SPACE>
44 <DELETE>
48 <LEFT>
4C <RIGHT>
58 <UP>
46 <DOWN>

Appendix 16

188

CODE FOR CREATING A HEIRARCHY OF
CHORDS, FROM "MOST INTUITIVE" TO

"LEAST INTUITIVE"

 This program reads in a number of chord data files
produced by Fingers.java, sorts them by chord,
averages their values to create an "average" array,
then sorts this average array by time and prints the
"average" chord data to file. Finally, the program
plots chord rank vs time, completion, and errors.

SortChord.m_________________________________
%SortChord.m

%This program reads in a number of chord data files,
%sorts them by chord, averages their values to create
%an "average" array, then sorts this average array by time
%and prints the "average" chord data to file.
%Finally, the program plots chord rank vs time, completion, and
%errors.

%The array of input file names
in_names = {'KATE.TXT', 'KRISPIN.TXT', 'LAURENN.TXT', ...

 'LEAHANN.TXT', 'MITCHY.TXT', ...
 'SHOM.TXT', 'STEVER.TXT', 'WILLN.TXT', ...
'joe.txt', 'scottmilne.txt', 'susan.txt'};

%One by one, read the files into arrays, and do stuff
for i=1:11

 %Read in file
 in_path = strcat('ResultsV1/', in_names{i});
 fid = fopen(in_path);
 [hex_chord, done, time, errors] = ...

textread(in_path, '%s %d %d %d', 'commentstyle','matlab');
 fclose(fid);

 %Convert hexidecimal chord values to decimal
 dec_chord = hex2dec(hex_chord);

 %Place info in an array of 2D arrays, and sort based on chord decimal
 %values

Appendix 16

189

 indata_array(:,:,i) = [dec_chord, done, time, errors];
 indata_array(:,:,i) = sortrows(indata_array(:,:,i));

end;

%Calculate one "average" array
for c=1:4
 for r=1:63

ave_array(r,c) = mean(indata_array(r,c,:));
 end;
end;

%Sort average array based on times
format short
ave_array = sortrows(ave_array, [3]);
disp(ave_array)

%Save average array to a text file
fid = fopen('ResultsV2/ave_array.txt', 'w');

fprintf(fid, 'Mean Chord Data Values\n');
fprintf(fid, ['FingerChord Done(0-1) Time(msec)' ...

 ' Errors\n']);

for i=1:63

 %Convert chords to binary, 6 digits
 chord = num2str(dec2bin(ave_array(i,1)));
 numleadzeros = 6-length(chord);
 leadzeros = '';
 for z=1:numleadzeros

leadzeros = strcat(leadzeros,'0');
 end;
 chord = strcat(leadzeros, chord);

 %Print data to file
 fprintf(fid, '%s %.3f %.3f %.3f\n',
...

 chord, ave_array(i,2), ave_array(i,3), ave_array(i,4));
end;
fclose(fid);

%Graph Chord Heirarchy vs. Chord Completion Time
i = 1:63;
grid on;
subplot(3,1,1)
plot(i, ave_array(i,3), '+-');

Appendix 16

190

title('Heuristics for FingerChord Intuitiveness -- Based on Averaged
Data');
xlabel('Chord Rank in Heirarchy (1:Most Intuitive, 63:Least Intuitive)');
ylabel('Ave.CompletionTime(msec)');
legend('Ave. Successful Chord Completion Time (msec)',0);

%Graph Chord Heirarchy vs. Successful Chord Completion Value
subplot(3,1,2)
plot(i, ave_array(i,2), '*-');
xlabel('Chord Rank in Heirarchy (1:Most Intuitive, 63:Least Intuitive)');
ylabel('Ave.OfSuccessfulCompletionBinaryValue');
legend('Average of Successful Chord Completion Binary Value (1=completed,
0=skipped)',0);

%Graph Chord Heirarchy vs. Number of Errors
subplot(3,1,3)
plot(i, ave_array(i,4), 's:');
xlabel('Chord Rank in Heirarchy (1:Most Intuitive, 63:Least Intuitive)');
ylabel('NumberOfErrors');
legend('Number of Errors Before a Successful Completion or Skip',0);

__

Appendix 16

191

CODE FOR EXTENDING 6-BIT FINGER
BUTTON CODES TO 8-BIT CHORD-MAP CODES

This MATLAB function reads in files holding arrays in
the following
form:

[6 bit binary finger chord] [character the finger chord maps to]
[6 bit binary finger chord] [character the finger chord maps to]

. .

. .

Based on the file's 'case' (upper, lower, mathsym
or control), the program extends the six bit binary
chord value to an 8 bit binary value, translates it
to hex and writes the modified file.

It requires an argument (1 2 3 or 4)
corresponding to the case of the data file it will
read in: upper, lower, mathsym or control.

FullBin.m
__

%FullBin.m
function FullBin(i)

%This function reads in files holding arrays in the following
%form:
%
%[6 bit binary finger chord] [character the finger chord maps to]
%
%Based on the file's 'case' (upper, lower, mathsym or control),
%The program extends the six bit binary chord value to an 8 bit binary
%value, translates it to hex and writes the modified file.

%The array of input & output file names
in_names = {'lower.txt' 'upper.txt' 'mathsym.txt' 'control.txt'};
out_names = {'lower2.txt' 'upper2.txt' 'mathsym2.txt' 'control2.txt'};

Appendix 16

192

%Read file into array, and do stuff

%Read in file
fid = fopen(in_names{i});
[chords characters] = ...
 textread(in_names{i}, '%s %s');
fclose(fid);

%Extend chords to 8 bits
if i == 1
 chords = strcat('00', chords);
elseif i== 2
 chords = strcat('01', chords);
elseif i == 3
 chords = strcat('10', chords);
else % i == 4
 chords = strcat('11', chords);
end;

%Convert chords to hex strings
dec_chords = bin2dec(chords);
hex_chords = num2str(dec2hex(dec_chords));

%Convert hex_chords from cell array to array
for v=1:length(hex_chords)
 temp{v} = hex_chords(v,:);
end;
hex_chords = temp';

%Place info in an array of 2D arrays
data_array = [hex_chords, characters];

%Save average array to a text file
fid = fopen(out_names{i}, 'w');
for r=1:length(data_array)
 %Print data to file
 chordval = data_array(r,1);
 charval = data_array(r,2);
 fprintf(fid, '%s %s\n', ...

 chordval{:}, charval{:});
end;
fclose(fid);
__

Appendix 16

193

CODE FOR CONVERTING 6-BIT FINGER
CODES TO THEIR DECIMAL EQUIVALENTS
WITHIN
[FINGER-CODE CHARACTER] ARRAYS

This MATLAB function reads in files holding arrays in
the following
form:

 [6 bit binary finger chord] [character the finger chord maps to]
[6 bit binary finger chord] [character the finger chord maps to]

. .

. .

Based on the file's 'case' (upper, lower, mathsym or
control), the program translates the 6 bit binary
finger code into decimal, then writes to a file.

It requires an argument (1 2 3 or 4) corresponding to
the case of the file it will read in: upper, lower,
mathsym or control.

DecCord.m
__

%DecChord.m
function DecChord(i)

%This function reads in files holding arrays in the following
%form:
%
%[6 bit binary finger chord] [character the finger chord maps to]
%
%Based on the file's 'case' (upper, lower, mathsym or control),
%The program translates the 6 bit binary finger code into decimal,
%then writes the modified file.

%The array of input & output file names
in_names = {'lower.txt' 'upper.txt' 'mathsym.txt' 'control.txt'};
out_names = {'lower3.txt' 'upper3.txt' 'mathsym3.txt' 'control3.txt'};

%Read file into array, and do stuff

%Read in file
fid = fopen(in_names{i});

Appendix 16

194

[chords characters] = ...
 textread(in_names{i}, '%s %s');
fclose(fid);

%Convert chords to decimal number strings
dec_chords = num2str(bin2dec(chords));

%Convert hex_chords from cell array to array
for v=1:length(dec_chords)
 temp{v} = dec_chords(v,:);
end;
dec_chords = temp';

%Place info in a 2D array
data_array = [dec_chords, characters];

%Save average array to a text file
fid = fopen(out_names{i}, 'w');
for r=1:length(data_array)
 %Print data to file
 chordval = data_array(r,1);
 charval = data_array(r,2);
 fprintf(fid, '%s %s\n', ...

 chordval{:}, charval{:});
end;
fclose(fid);
__

Appendix 16

195

HAND-CHORD PICTURE GENERATION CODE

Written by Michael Fromberger

ChordPicGenerator

 #!/usr/bin/perl

#
Generate hand images in EPS for the chording keyboard
#
by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 2000 The Trustees of Dartmouth College
#
$Id: handy,v 1.2 2000/05/25 13:44:01 sting Exp $
#
@_=split(/\//,$0);chomp($prog=pop(@_));

These numbers came from the original static hand image we used for
the reaction tester (which, in turn, came from an on-screen tracing
of my left hand, as rendered into an outline using Canvas 6 on the
Macintosh, and exported as a PICT. Needless to say, these are ad
hoc values, but that's what I based the outlines below on...
$BASEWIDTH = 331;
$BASEHEIGHT = 378;
$SCALE = 0.15; # should be a percentage (used as a multiplier)

%lower = (
 "1" => '<RETURN>', "2" => '<SPACE>', "3" => 'e',
 "4" => '<DELETE>', "5" => 'l', "6" => '<DOWN>',
 "7" => 'w', "8" => '<LEFT>', "9" => 'k',
 "10" => 't', "11" => '!', "12" => '<RIGHT>',
 "13" => '-', "15" => 'x', "16" => 'o',
 "17" => 's', "18" => 'h', "19" => 'p',
 "20" => 'a', "21" => 'i', "22" => 'v',
 "23" => 'b', "24" => '<UP>', "25" => '\'',
 "26" => '.', "27" => 'z', "28" => 'd',
 "29" => ';', "32" => 'f', "33" => '?',
 "34" => 'u', "35" => 'm', "36" => 'n',
 "37" => 'j', "38" => 'c', "39" => 'q',
 "40" => '<TAB>', "41" => ',', "42" => 'y',
 "43" => '"', "44" => '(', "48" => 'r',
 "49" => 'g', "52" => ':', "60" => ')',

);
%upper = (

 "1" => '<RETURN>', "2" => '<SPACE>', "3" => 'E',

Appendix 16

196

 "4" => '<DELETE>', "5" => 'L', "6" => '<DOWN>',
 "7" => 'W', "8" => '<LEFT>', "9" => 'K',
 "10" => 'T', "11" => '!', "12" => '<RIGHT>',
 "13" => '-', "15" => 'X', "16" => 'O',
 "17" => 'S', "18" => 'H', "19" => 'P',
 "20" => 'A', "21" => 'I', "22" => 'V',
 "23" => 'B', "24" => '<UP>', "25" => '\'',
 "26" => '.', "27" => 'Z', "28" => 'D',
 "29" => ';', "32" => 'F', "33" => '?',
 "34" => 'U', "35" => 'M', "36" => 'N',
 "37" => 'J', "38" => 'C', "39" => 'Q',
 "40" => '<TAB>', "41" => ',', "42" => 'Y',
 "43" => '"', "44" => '(', "48" => 'R',
 "49" => 'G', "52" => ':', "60" => ')',

);
%control = (

"1" => '<RETURN>', "2" => '<SPACE>', "3" => '<ESC>',
 "4" => '<DELETE>', "6" => '<SHFT-DOWN>', "7" => '<CTRL-W>',
 "8" => '<SHFT-LEFT>', "12" => '<SHFT-RIGHT>', "15" => '<CTRL-X>',
 "16" => '<CTRL-O>', "17" => '<CTRL-S>', "19" => '<CTRL-P>',
 "20" => '<ALT>', "22" => '<CTRL-V>', "23" => '<CTL-ALT-DEL>',
 "24" => '<SHFT-UP>', "25" => '<"and">', "36" => '<CTRL-N>',
 "38" => '<CTRL-C>', "39" => '<CTRL-Q>', "40" => '<SHFT-TAB>',

);
%math = (

"1" => '<RETURN>', "2" => '<SPACE>', "3" => '>',
"4" => '<DELETE>', "5" => '4', "6" => '<DOWN>',
"7" => '*', "8" => '<LEFT>', "9" => '[',
"10" => '=', "11" => '\\', "12" => '<RIGHT>',
"13" => '-', "15" => '%', "16" => 'O',
"17" => '$', "18" => '5', "19" => '+',
"20" => '@', "21" => '|', "22" => ']',
"23" => '<', "24" => '<UP>', "25" => '&',
"26" => '~', "27" => '#', "28" => '3',
"32" => '1', "34" => '9', "35" => '8',
"36" => '/', "37" => '{', "38" => '_',
"39" => '^', "40" => '<TAB>', "41" => '`',
"42" => '6', "43" => '}', "44" => '(',
"48" => '2', "49" => '7', "60" => ')',

);

%kind = (
 "math" => \%math,
 "lower" => \%lower,
 "upper" => \%upper,
 "control" => \%control

);

Appendix 16

197

foreach $k (keys %kind) {
 print STDERR $k, " ";
 $v = $kind{$k};

 for($ix = 0; $ix < 64; $ix++) {
next unless exists($v->{$ix}); # skip undefined chords

$fn = sprintf("%s%02d.eps", $k, $ix);
open(OFP, ">$fn") or die "$prog: can't open $fn: $!\n";

Choose a size for the label based on the length of it
$label = $v->{$ix};
if(length($label) == 1) {
 $size = 200;
} elsif(length($label) < 8) {
 $size = 50;
} elsif(length($label) < 12) {
 $size = 40;
} else {
 $size = 30;
}

print_ps(OFP, $k, $ix, $size, $label, $SCALE);

close(OFP);
print STDERR ".";

 }
 print STDERR "\n";
}
exit 0;

#--

sub print_ps {
 my($ofp, $kind, $value, $basefont, $string, $scale) = @_;
 my($width, $height, $op);

 $width = int($BASEWIDTH * $scale) + 1;
 $height = int($BASEHEIGHT * $scale) + 1;
 $string =~ s/([()])/\\\1/g;

 print $ofp <<EOHEADER;
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 $width $height
%%Title: ($kind $value $string)
%%IncludeFont: Times-Roman

/pt { $scale mul } def % point scaling

Appendix 16

198

EOHEADER

 for (1..6) {
if($value & 1) {
 $op = "fill";
} else {
 $op = "stroke";
}

printf $ofp ("/op%d { %s } def\n", $_, $op);
$value >>= 1;

 }

 printf $ofp ("\n/ch (%s) def\n/fs %d pt def\n\n",
 $string, $basefont);

 print $ofp <<EOBODY;
/lw 0.5 def % line weight
/cf 0 def % fill shading
/cr 11 pt def % circle radius
/ff { /Times-Roman findfont fs scalefont setfont } def

newpath
% Initial point
318 pt 2 pt moveto

% Bottom curve of thumb
230 pt 4 pt 160 pt 17 pt 380 pt arct
160 pt 17 pt 57 pt 72 pt 380 pt arct
57 pt 72 pt lineto

% Tip and inner curve of thumb
17 pt 93 pt 31 pt 125 pt 85 pt 115 pt curveto
123 pt 92 pt lineto
149 pt 89 pt 155 pt 117 pt 121 pt 156 pt curveto

% Outer line of index finger
23 pt 240 pt lineto

% Tip of index finger
0 pt 266 pt 0 pt 300 pt 52 pt 270 pt curveto

% Inner line of index finger
120 pt 217 pt lineto

% Joint and outer line of middle finger
138 pt 195 pt 149 pt 208 pt 118 pt 241 pt curveto
64 pt 298 pt lineto

Appendix 16

199

% Tip of middle finger
29 pt 343 pt 57 pt 364 pt 92 pt 329 pt curveto
152 pt 260 pt lineto

% Joint and outer line of ring finger
177 pt 233 pt 188 pt 244 pt 161 pt 278 pt curveto
115 pt 343 pt lineto

% Tip of ring finger
101 pt 368 pt 142 pt 378 pt 158 pt 347 pt curveto
209 pt 269 pt lineto

% Joint and outer line of pinky
228 pt 242 pt 237 pt 251 pt 224 pt 277 pt curveto
194 pt 325 pt lineto

% Tip of pinky
179 pt 354 pt 206 pt 367 pt 231 pt 329 pt curveto
271 pt 263 pt lineto

% Outside curve of hand
307 pt 215 pt lineto
331 pt 182 pt lineto

0 setgray lw setlinewidth stroke

% Circles
newpath 208 pt cr add 333 pt moveto 208 pt 333 pt cr 0 360 arc
cf setgray lw setlinewidth op1
newpath 132 pt cr add 350 pt moveto 132 pt 350 pt cr 0 360 arc
cf setgray lw setlinewidth op2
newpath 90 pt cr add 300 pt moveto 90 pt 300 pt cr 0 360 arc
cf setgray lw setlinewidth op3
newpath 65 pt cr add 328 pt moveto 65 pt 328 pt cr 0 360 arc
cf setgray lw setlinewidth op4
newpath 53 pt cr add 243 pt moveto 53 pt 243 pt cr 0 360 arc
cf setgray lw setlinewidth op5
newpath 26 pt cr add 266 pt moveto 26 pt 266 pt cr 0 360 arc
cf setgray lw setlinewidth op6

% Set the current font and go to the base location
ff newpath 220 pt 65 pt moveto

% Get the string's x displacement, cut it in half, and back up
% by that amount, so the string is centered over the target point
ch stringwidth pop 2 div neg 0 rmoveto
ch show

Appendix 16

200

showpage
EOBODY

}

#--
HERE THERE BE DRAGONS

Appendix 17

201

CALCULATOR LEARNABILITY TEST CODE

The following MATLAB program was written to test the
learnability of a reduced character set: numbers and
math operators. It times data entry sequences, and
saves times to a file.

Calc.m
__
%Calc.m
function calc

%A program testing a limited character set consisting of
%numbers and the operands: [+,-,*,/]. Basically its a timed
%calculator.
%Trial time results get saved in a file

%Variables & Constants
L = 20; % 2/3 the number of questions
j=1; % the current question number

%Get User Name
name_str = input([' Please enter your first name in lowercase'...

 ' letters, \nthen press <return>: '], 's');
file_name_str = [name_str '.mat'];

%Directions
disp(' ');
disp(' The following program is designed to test how fast you can');
disp(' accurately enter numbers and math operators (+,-,* and /).');
disp(' At each of the following (30) prompts, please repeat-type the');
disp('characters enclosed in <<>> brackets, then press <return>.');
disp(' ');
disp(' For example:');
disp('1. <<42>>42');
disp('2. <<*>>*');
disp('and so on...');
disp(' ');
input(' Press <return> to begin:');

%start timer
tic;

Appendix 17

202

%Create an array of L random integer numbers between 1 and 100, no zeros
%rand_numbers = random('Discrete Uniform', 100*ones(1,L));
rand_numbers = floor(100*rand([1 L]))+1;
while (~isempty(find(rand_numbers == 0)))
 rand_numbers = floor(100*rand([1 L]))+1;
end;

%Create an array of operands: ['+','-', '*' '/'] ,and an array of
%random indeces for this operand array
operand_symbols = ['+', '-', '*' '/'];
rand_operand_codes = floor(4*rand([1 L]))+1;
while (~isempty(find(rand_numbers == 0)))
 rand_operand_codes = floor(4*rand([1 L]))+1;
end;

%Main program loop
for i = 1:2:length(rand_numbers)-1

 %Get (and error check) first operand
 op1 = ' ';
 first_time = 1;
 while ~isa(op1, 'double') | op1 ~= rand_numbers(i)

if first_time ~= 1
 disp(['Mistake made. Please type <<'num2str(rand_numbers(i)) ...

 '>>.']);
else
 disp(' ');
end;

op1 = input([num2str(j) '. <<' num2str(rand_numbers(i)) ...
 '>>'], 's');

op1 = str2num(op1);
first_time = 0;

 end;
 j=j+1;

 %Get (and error check) operator
 operator = ' ';
 first_time = 1;
 while ~strcmp(operator,operand_symbols(rand_operand_codes(i)))

if first_time ~= 1
 disp(['Please type <<' operand_symbols(rand_operand_codes(i))

...
 '>>']);

else
 disp(' ');
end;
operator = input([num2str(j) '. <<' ...

 operand_symbols(rand_operand_codes(i))...

Appendix 17

203

 '>>'], 's');
first_time = 0;

 end;
 j=j+1;

 %Get (and error check) second operand
 op2 = ' ';
 first_time = 1;
 while ~isa(op2, 'double') | op2 ~= rand_numbers(i+1)

if first_time ~= 1
 disp(['Please type <<' num2str(rand_numbers(i+1)) '>>.']);
else
 disp(' ');
end;
op2 = input([num2str(j) '. <<' num2str(rand_numbers(i+1)) '>>'],...

 's');
op2 = str2num(op2);
first_time = 0;

 end;
 j=j+1;

end; %for

%Stop stopwatch
time_taken = toc

%Save the time taken
 if exist(file_name_str, 'file')
 load(file_name_str);
 times(length(times)+1) = time_taken;
 else
 times(1) = time_taken;
 end;

 save(file_name_str, 'times');

%Thanx
disp(' ');
disp(' Thanks for taking the time to do this trial!');
disp(' ');
disp([' Your time this time round was: ' num2str(time_taken) ...
 ' seconds.']);
disp(' ');
disp(' Your trial times are:');
disp(' ');
disp(num2str(times));
__

Appendix 17

204

CALCULATOR LEARNABILITY TEST
RESULTS CODE

The following MATLAB program displays in graphical
format the data obtained using "Calc.m". The graphs
are supposed to represent the "learnability" of the
interface for a reduced character set.

CalcGraph.m
__
%CalcGraph.m
% Graphs the results of the "Calc.m" Test, which prompted
% test subjects to enter a set number of numbers and math symbols
% and timed each trial. This program graphs trial number vs time
% taken.

%The results:
ayorkor = [509.1375 353.9590 321.2991];
dudley = [3839.0 378.];
jennyl = [486.3291 193.2480];
kl = [243.089 255.567 206.117 195.121 178.156 189.172 152.059...
 164.586 156.254];
leah = [356.0343 290.2411 456.0875];
michael = [281 218.2940];
zoe = [34882 401];
dean = [12052 395 405];
greg = [33343 12126 468];

%Time with a standard keyboard
%benchmarq = mean([52.5860 46.7869 39.3441])

%Graph Results
subplot(3,3,1)
plot([1:length(ayorkor)], ayorkor, '+-');
xlabel('Trial Number');
ylabel('Trial Time (secs)');

subplot(3,3,2)
plot([1:length(dudley)], dudley, '*-');
xlabel('Trial Number');
ylabel('Trial Time (secs)');

subplot(3,3,3)
plot([1:length(jennyl)], jennyl, 's-');
xlabel('Trial Number');
ylabel('Trial Time (secs)');

subplot(3,3,4)
plot([1:length(leah)], leah, 'o-');
xlabel('Trial Number');
ylabel('Trial Time (secs)');

Appendix 17

205

subplot(3,3,5)
plot([1:length(zoe)], michael, 'o-');
xlabel('Trial Number');
ylabel('Trial Time (secs)');

subplot(3,3,6)
plot([1:length(dean)], dean, 'o-');
xlabel('Trial Number');
ylabel('Trial Time (secs)');

subplot(3,3,7)
plot([1:length(greg)], greg, 'o-');
xlabel('Trial Number');
ylabel('Trial Time (secs)');

subplot(3,3,8:9)
ten_hours = [1:60];
Y = 230*exp(-.11*ten_hours) + 60;
plot([1:length(kl)], kl, 'o-', ten_hours, Y, 'k:', 60,Y(60),'k*');
xlabel('Trial Number');
ylabel('Trial Time (secs)');
legend('data', 'fitted curve', 'time after 10hrs (extrapolated)',0);
hold off

diary 'CalcRes';

%Speed prediction after 10 of testing hours:

%Assumptions:
%1) Ten minutes necessary per trial => 60 trials can be done in
% 10 hours.

%2) Each trial, hit 90 characters

%3) Five characters in a word (average)
%http://ds.dial.pipex.com/town/park/yfn77/Academic/Maths/Sentence.html

final_trial_time = Y(60);
chars_per_sec=90/final_trial_time;
chars_per_min=chars_per_sec*60;
words_per_min=chars_per_min/5;
disp(['Predicted words per min after 10 hours of testing (60 trials):' ...
 num2str(words_per_min)]);
diary off;
__

Appendix 18

206

Final Prototype Survey

1) What's good about this interface? What are its
strengths?

2) What are the interface's weaknesses?

3) Does anything in particular bother you about using
the device?

4) Could you imagine using this device for typing?
Could you imagine using it for some other purpose?

5) If you can envision using this device, in what
setting do you envision using it?

6) If you were to use this device for something other
than entering text into a a digital device (computer,
digital assistant, etc), what would you use it for?

7) What would you call this device?

8)Please rate the device's acceptability with a
number 1(low) through 5(high), taking into account
aesthetic, social, psychological & physiological
considerations, such as:
Is it ugly?
Would I feel comfortable using this device in public?
Is using the device comfortable? Does it hurt to use
it? (Assuming it is properly adjusted and you have
been using it for a few weeks already.)

Appendix 18

207

HID Project Krispin Leydon
FINAL PROTOTYPE SURVEY RESULTS

Name Profession Interface PROS Interface Cons Could Imagine Typing with device Envisioned useful settings Alternate functions Programmable Chord Map Desirable? Acceptability Rating
Test Subject 1 ES Student one-handed, comfortable,naturat Some chords awkward, practice required Yes Web browsing, taking notes, quick e-mails remote control 4
Test Subject 2 ES Student natural, fun, good weight, adjustable learning time, need better tactile feedbak, better mode shifting, padded grip region, better buttons Yes remote control, virtual reality aplications 4
Test Subject 3 ES Student one-handed, mobility some awkward button combos, device slipped from grip Yes Handycapped access, extensor robotics video game controller, all purpose controller 5
Test Subject 4 ES Student mobilty Buttons don't provide enough feedback, grip needs cushioning Yes while travelling, an idea journal all purpose controler yeah! 4.5
Test Subject 5 ES Student light, comfortable, fast to learn Would take practice to get fast Yes 4
Test Subject 6 ES Student don't have to sit down, adjustable Too big, doens't fit hand, have to learn chords, wires exposed Yes astronaut, typing on a hike yes! 4
Test Subject 7 Woodshop Instructor One-handed operation. Difficult to learn, some chords awkward, cramped hands Yes PDAs, remotes for vehicles, tv 4
Test Subject 8 Woodshop Instructor Free range of motion, good size & weight Frustrating to learn, some chords impossible Yes remote, PDA, all-purpose controller 3.3

___ _______ ___ ________________________________ ____________________

natural, one-handed, mobility, light awkward chords, difficult to learn, buttons didn't provide enough tactile feedback, wires exposed, Yes(100%) remote,video games, PDAs, extensor robotics, web navigation, handicaped access Y(100%) ave: 4.1
comforatble, don' have to sit, some people experienced hand cramps, grip needs cushioning.
free range of motion, good size&weight

Appendix 19

208

Analysis:Risk Posed by Head-Mounted RF Transmitter:
A Worst Case Analysis:

FCC Safety Spec: Mass-normalized rate of energy absorption (SAR) is limited
to 1.6 W/Kg averaged over any 1g of tissue1.

Assumptions:
•Antenna is an insulated wire of length L with an insulation thickness of r0.
•Wire is surrounded on all sides by human tissue.
•Radio is constantly transmitting all of the power it receives: Mmax.
•Radio energy is emitted with even intensity along the antennas length.
•The penetration depth for power in human tissue is a constant .
•Human tissue is a constant density

Idealized Model:

1 Adam D. Tinniswood, et al., "Computations of SAR Distributions for Two Anatomically Based Models of the
Human Head Using CAD Files of Commercial Telephones and the Parallelized FDTD Code", IEEE
Transactions On Antennas and Propagation, Vol. 46, No. 6 June 1998. p829.

 ,

ro

Antenna Wire

Insulation

Human
Tissue

L

M
m

ax

Appendix 19

209

Analysis:

Given our assumptions and model, the maximum power density released
by our antenna into a gram of tissue is :

where k is an unknown constant of proportionality.

To isolate k, we solve the integral

and rearrange the terms:

To find a value for k, we enter the following values in equation (2):

Mmax = 5V•1.5mA = 7.5mW
 = .03m.

L = 0.1702m
 = 1000kg/m3

And obtain

MMax =
k2 L

e
− r

dr
ro

∞

∫ (1)

k =
2 L

MMaxe
r0

(2)

k = .2035
Wm3

Kg 2

MMax =
K2 L 1

e
− r0

(3)

W

Kg

W

Kg

Wm3

Kg2

Appendix 19

210

Entering this value for k into equation (2), we find that the maximum
power density released by our antenna into a gram of human tissue is

Conclusion:

Since the power density released by our antenna is several orders of
magnitude below the FCC limit, we will assume that the radio emission from
our device is not a significant health risk.

.0073
W

Kg
<< 1.6

W

Kg
.

Appendix 20

211

HUMAN-SIDE MATRIX 1: Human Control Method
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

 ALTERNATIVES:

Hand/Finger
Motion

4 4 5 5 3 * * * * 97

Voice 4 5 3 4 2 * * * * 88
Eye Motion 4 4 2 3 2 * * * * 70
Body Motion 4 5 2 3 3 * * * * 79

Nerve Impulses 5 4 3 3 1 * * * * 76

Appendix 20

212

 HUMAN-SIDE MATRIX 2: Physical Interface
Topology
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

 ALTERNATIVES:
Wearable 5 4 2 * 4 5 3 * 3 109

No Physical Form 5 5 3 * 5 2 2 * 1 82
(2)Handheld 3 4 3 * 2 5 3 * 4 103
(1)Handheld 4 3 5 * 4 5 3 * 5 123

Appendix 20

213

HUMAN-SIDE MATRIX 3: Actuation Type
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

 ALTERNATIVES:
Linear Motion 3 4 5 3 3 3 2 * 3 113
Linear Force 4 3 3 2 3 3 2 * 4 111

Discrete Motion 5 4 5 4 4 5 5 * 4 155
Discrete Force 5 3 3 4 4 5 3 * 4 140

Discrete
Motion&Force

5 4 5 5 5 5 5 * 5 165

Appendix 20

214

HUMAN-SIDE MATRIX 4: DISCRETE CONTROL
SCHEME
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
Serial Code 5 2 1 1 4 5 3 4 * 100

Rotary Selection 5 3 3 3 2 3 4 4 * 118
One Actuator per

Char.
2 4 4 2 5 3 5 2 * 110

Chording 4 5 3 4 4 5 4 5 * 132
Rotary-Chording

Combo
5 5 3 5 5 4 3 5 * 152

Appendix 20

215

HUMAN-SIDE MATRIX 5: ONE-SIZE-FITS-ALL OR
ADJUSTABLE?
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
One-Size-Fits-

All
* 3 5 3 * 5 5 3 5 121

Adjustable * 5 4 5 * 4 3 5 3 123

Appendix 20

216

DEVICE-SIDE MATRIX 1: Digital Design
Approach
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
VLSI 5 * * * * 3 3 1 2 59

State Machine &
Glue Logic

3 * * * * 3 4 2 3 58

Microcontroller 4 * * * * 5 5 5 5 90

Appendix 20

217

DEVICE-SIDE MATRIX 2: Tethered of
Wireless?
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
Wired 2 * 3 4 2 5 5 4 5 116

Wireless 5 * 5 5 5 4 3 5 2 141

Appendix 20

218

DEVICE-SIDE MATRIX 3: Wireless Medium
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
Infared 3 * * * 5 5 4 * 4 69

Ultrasound 2 * * * 3 5 4 * 5 64
Radio 5 * * * 5 5 4 * 3 77

Appendix 20

219

DEVICE-SIDE MATRIX 4: Processing Location
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
Handheld Unit 4 * 4 * * 5 3 3 * 86
Base Station 5 * 5 * * 5 4 5 * 106
Device Being

Interfaced (via
Software)

5 * 5 * * 2 5 4 * 102

Appendix 20

220

DEVICE-SIDE MATRIX 5: Processor
Architecture?
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
A new USB chip * * * * * 2 2 4 3 36
8051 * * * * * 5 5 3 5 64

Appendix 20

221

DEVICE-SIDE MATRIX 6: First Port
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 3 2 4 5 5 3 2

ALTERNATIVES:
MacADB * * * 5 * 3 3 * 4 48
USB * * * 5 * 2 2 * 3 36

RS-232 * * * 5 * 5 5 * 5 70
AT * * * 5 * 5 4 * 5 65

Appendix 20

222

DEVICE-SIDE MATRIX 7: Second Port
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
MacADB * * 4 4 * 3 3 3 4 80
USB * * 4 5 * 2 2 5 3 79

RS-232 * * 1 1 * 5 5 3 5 73
PC-AT * * 5 5 * 5 4 4 5 108

Appendix 20

223

DEVICE-SIDE MATRIX 8: AT Port Method
1=Low, 5=High, *=Not Applicable

CONSIDERATIONS:

P
O
R
T
A
B
I
L
I
T
Y

H
E
A
L
T
H
&
S
A
F
E
T
Y

A
C
C
E
P
T
A
B
I
L
I
T
Y

E
F
E
C
T
I
V
E
N
E
S
S

M
U
L
T
I
T
A
S
K
|
A
B
I
L
I
T
Y

F
E
A
S
I
B
I
L
I
T
Y

S
I
M
P
L
I
C
I
T
Y

E
X
T
E
N
D
A
B
I
L
I
T
Y

C
O
S
T T

O
T
A
L

WEIGHT [1-5]: 5 5 5 4 4 5 4 3 2

ALTERNATIVES:
Tap into an
existing PC
Keyboard Matrix

* * * 3 * 5 4 3 3 68

Use a RS232->AT
keyboard "wedge"

* * * 4 * 5 5 3 1 72

Replicate PC-AT
Protocol

* * * 5 * 5 3 4 5 79

